Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits (2205.04803v3)

Published 10 May 2022 in math.DS

Abstract: We consider time-periodic perturbations of single-degree-of-freedom Hamiltonian systems and study their real-meromorphic nonintegrability in the Bogoyavlenskij sense using a generalized version due to Ayoul and Zung of the Morales-Ramis theory. The perturbation terms are assumed to have finite Fourier series in time, and the perturbed systems are rewritten as higher-dimensional autonomous systems having the small parameter as a state variable.We show that if the Melnikov functions are not constant, then the autonomous systems are not real-meromorphically integrable near homo- and heteroclinic orbits. Our result is not just an extension of previous results for homocliic orbits to heteroclinic orbits and provides a stronger conclusion than them for the case of homoclinic orbits. We illustrate the theory for two periodically forced Duffing oscillators and a periodically forced two-dimensional system.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.