Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data-Driven Stability Assessment of Power Electronic Converters with Multi-Resolution Dynamic Mode Decomposition

Published 15 Apr 2024 in eess.SP, cs.SY, and eess.SY | (2404.09808v1)

Abstract: Harmonic instability occurs frequently in the power electronic converter system. This paper leverages multi-resolution dynamic mode decomposition (MR-DMD) as a data-driven diagnostic tool for the system stability of power electronic converters, not requiring complex modeling and detailed control information. By combining dynamic mode decomposition (DMD) with the multi-resolution analysis used in wavelet theory, dynamic modes and eigenvalues can be identified at different decomposition levels and time scales with the MR-DMD algorithm, thereby allowing for handling datasets with transient time behaviors, which is not achievable using conventional DMD. Further, the selection criteria for important parameters in MR-DMD are clearly defined through derivation, elucidating the reason for enabling it to extract eigenvalues within different frequency ranges. Finally, the analysis results are verified using the dataset collected from the experimental platform of a low-frequency oscillation scenario in electrified railways featuring a single-phase converter.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.