Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-KD: Towards Alignment Invariant Face Image Quality Assessment Using Knowledge Distillation (2404.09555v1)

Published 15 Apr 2024 in cs.CV

Abstract: Face Image Quality Assessment (FIQA) techniques have seen steady improvements over recent years, but their performance still deteriorates if the input face samples are not properly aligned. This alignment sensitivity comes from the fact that most FIQA techniques are trained or designed using a specific face alignment procedure. If the alignment technique changes, the performance of most existing FIQA techniques quickly becomes suboptimal. To address this problem, we present in this paper a novel knowledge distillation approach, termed AI-KD that can extend on any existing FIQA technique, improving its robustness to alignment variations and, in turn, performance with different alignment procedures. To validate the proposed distillation approach, we conduct comprehensive experiments on 6 face datasets with 4 recent face recognition models and in comparison to 7 state-of-the-art FIQA techniques. Our results show that AI-KD consistently improves performance of the initial FIQA techniques not only with misaligned samples, but also with properly aligned facial images. Furthermore, it leads to a new state-of-the-art, when used with a competitive initial FIQA approach. The code for AI-KD is made publicly available from: https://github.com/LSIbabnikz/AI-KD.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. S. Anwarul and S. Dahiya, “A Comprehensive Review on Face Recognition Methods and Factors Affecting Facial Recognition Accuracy,” Proceedings of ICRIC, 2020.
  2. T. Schlett, C. Rathgeb, O. Henniger, J. Galbally, J. Fierrez, and C. Busch, “Face Image Quality Assessment: A Literature Survey,” CSUR, 2022.
  3. “ISO/IEC DIS 29794-1, Biometric Sample Quality,” standard, International Organization for Standardization (ISO), 2022.
  4. Y. Peng, L. J. Spreeuwers, and R. N. Veldhuis, “Low-Resolution Face Recognition and the Importance of Proper Alignment,” IET Biometrics, vol. 8, no. 4, 2019.
  5. A. Kumar, A. Kaur, and M. Kumar, “Face Detection Techniques: a Review,” AIR, vol. 52, 2019.
  6. X. Gao, S. Z. Li, R. Liu, and P. Zhang, “Standardization of Face Image Sample Quality,” in Proceedings of ICB, Springer, 2007.
  7. K. Nasrollahi and T. B. Moeslund, “Extracting a Good Quality Frontal Face Image From a Low-Resolution Video Sequence,” TCSVT, 2011.
  8. P. Terhorst, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper, “SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness,” in Proceedings of CVPR, 2020.
  9. Ž. Babnik, P. Peer, and V. Štruc, “FaceQAN: Face Image Quality Assessment through Adversarial Noise Exploration,” in ICPR, 2022.
  10. Ž. Babnik, P. Peer, and V. Štruc, “DifFIQA: Face Image Quality Assessment Using Denoising Diffusion Probabilistic Models,” in IJCB, 2023.
  11. L. Best-Rowden and A. K. Jain, “Learning Face Image Quality from Human Assessments,” TIFS, vol. 13, no. 12, 2018.
  12. J. Hernandez-Ortega, J. Galbally, J. Fierrez, R. Haraksim, and L. Beslay, “FaceQnet: Quality Assessment for Face Recognition Based on Deep Learning,” in Proceedings of ICB, 2019.
  13. W. Xie, J. Byrne, and A. Zisserman, “Inducing Predictive Uncertainty Estimation for Face Verification,” in Proceedings of BMVC, 2020.
  14. F.-Z. Ou, X. Chen, R. Zhang, Y. Huang, S. Li, J. Li, Y. Li, L. Cao, and Y.-G. Wang, “SDD-FIQA: Unsupervised Face Image Quality Assessment with Similarity Distribution Distance,” in Proceedings of CVPR, 2021.
  15. Y. Shi and A. K. Jain, “Probabilistic Face Embeddings,” in CVPR, 2019.
  16. Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “MagFace: A Universal Representation for Face Recognition and Quality Assessment,” in Proceedings of CVPR, 2021.
  17. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive Angular Margin Loss for Deep Face Recognition,” in CVPR, 2019.
  18. F. Boutros, M. Fang, M. Klemt, B. Fu, and N. Damer, “CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability,” in Proceedings of CVPR, 2023.
  19. M. Kim, A. K. Jain, and X. Liu, “AdaFace: Quality Adaptive Margin for Face Recognition,” in Proceedings of CVPR, 2022.
  20. E. Eidinger, R. Enbar, and T. Hassner, “Age and Gender Estimation of Unfiltered Faces,” IEEE TIFS, vol. 9, no. 12, 2014.
  21. G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,” tech. rep., UMass, Amherst, Oct. 2007.
  22. T. Zheng and W. Deng, “Cross-Pose LFW: A Database for Studying Cross-Pose Face Recognition in Unconstrained Environments,” Tech. Rep. 18-01, BUPT, February 2018.
  23. S. Sengupta, J. C. Cheng, C. D. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs, “Frontal to Profile Face Verification in the Wild,” in Proceedings of WACV, 2016.
  24. T. Zheng, W. Deng, and J. Hu, “Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments,” CoRR, vol. abs/1708.08197, 2017.
  25. M. Knoche, S. Hormann, and G. Rigoll, “Cross-Quality LFW: A Database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments,” in Proceedings of FG, 2021.
  26. J. Hernandez-Ortega, J. Galbally, J. Fiérrez, and L. Beslay, “Biometric Quality: Review and Application to Face Recognition with FaceQnet,” arXiv preprint arXiv:2006.03298, 2020.
  27. L. Qin, M. Wang, C. Deng, K. Wang, X. Chen, J. Hu, and W. Deng, “SwinFace: A Multi-Task Transformer for Face Recognition, Expression Recognition, Age Estimation and Attribute Estimation,” TCSVT, 2023.
  28. J. Dan, Y. Liu, H. Xie, J. Deng, H. Xie, X. Xie, and B. Sun, “TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective,” in Proceedings of ICCV, 2023.
  29. J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild,” in CVPR, 2020.
  30. J. Xiang and G. Zhu, “Joint Face Detection and Facial Expression Recognition with MTCNN,” in Proceedings of ICISCE, IEEE, 2017.
  31. V. Kazemi and J. Sullivan, “One Millisecond Face Alignment with an Ensemble of Regression Trees,” in Proceedings of CVPR, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.