Papers
Topics
Authors
Recent
Search
2000 character limit reached

HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images

Published 14 Apr 2024 in cs.CV | (2404.09178v1)

Abstract: Benefiting from the developments in deep learning technology, deep-learning-based algorithms employing automatic feature extraction have achieved remarkable performance on the change detection (CD) task. However, the performance of existing deep-learning-based CD methods is hindered by the imbalance between changed and unchanged pixels. To tackle this problem, a progressive foreground-balanced sampling strategy on the basis of not adding change information is proposed in this article to help the model accurately learn the features of the changed pixels during the early training process and thereby improve detection performance.Furthermore, we design a discriminative Siamese network, hierarchical attention network (HANet), which can integrate multiscale features and refine detailed features. The main part of HANet is the HAN module, which is a lightweight and effective self-attention mechanism. Extensive experiments and ablation studies on two CDdatasets with extremely unbalanced labels validate the effectiveness and efficiency of the proposed method.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.