Papers
Topics
Authors
Recent
2000 character limit reached

MonoPatchNeRF: Improving Neural Radiance Fields with Patch-based Monocular Guidance (2404.08252v2)

Published 12 Apr 2024 in cs.CV

Abstract: The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for large scale sparse view scenes, such as ETH3D. Density-based approaches tend to be under-constrained, while surface-based approaches tend to miss details. In this paper, we take a density-based approach, sampling patches instead of individual rays to better incorporate monocular depth and normal estimates and patch-based photometric consistency constraints between training views and sampled virtual views. Loosely constraining densities based on estimated depth aligned to sparse points further improves geometric accuracy. While maintaining similar view synthesis quality, our approach significantly improves geometric accuracy on the ETH3D benchmark, e.g. increasing the F1@2cm score by 4x-8x compared to other regularized density-based approaches, with much lower training and inference time than other approaches.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 65 likes about this paper.