Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clean-NeRF: Reformulating NeRF to account for View-Dependent Observations (2303.14707v1)

Published 26 Mar 2023 in cs.CV

Abstract: While Neural Radiance Fields (NeRFs) had achieved unprecedented novel view synthesis results, they have been struggling in dealing with large-scale cluttered scenes with sparse input views and highly view-dependent appearances. Specifically, existing NeRF-based models tend to produce blurry rendering with the volumetric reconstruction often inaccurate, where a lot of reconstruction errors are observed in the form of foggy "floaters" hovering within the entire volume of an opaque 3D scene. Such inaccuracies impede NeRF's potential for accurate 3D NeRF registration, object detection, segmentation, etc., which possibly accounts for only limited significant research effort so far to directly address these important 3D fundamental computer vision problems to date. This paper analyzes the NeRF's struggles in such settings and proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes. Our key insights consist of enforcing effective appearance and geometry constraints, which are absent in the conventional NeRF reconstruction, by 1) automatically detecting and modeling view-dependent appearances in the training views to prevent them from interfering with density estimation, which is complete with 2) a geometric correction procedure performed on each traced ray during inference. Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input. Codes will be released.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xinhang Liu (17 papers)
  2. Yu-Wing Tai (123 papers)
  3. Chi-Keung Tang (81 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.