Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Terahertz imaging super-resolution for documental heritage diagnostics (2404.07798v1)

Published 11 Apr 2024 in physics.optics and physics.app-ph

Abstract: Terahertz imaging provides valuable insights into the composition and structure of objects or materials, with applications spanning security screening, medical imaging, materials science, and cultural heritage preservation. Despite its widespread utility, traditional terahertz imaging is limited in spatial resolution to approximately 1 mm according to Abbe's formula. In this paper, we propose a novel super-resolution method for terahertz time-domain spectroscopy systems. Our approach involves spatial filtering through scattering in the far-field of high spatial frequency components of the imaged sample. This method leverages evanescent wave filtering using a knife edge, akin to a standard structured illumination scheme. We demonstrate improved spatial resolution in slit diffraction, edge imaging, and reflection imaging of structures fabricated on a paper substrate using commonly encountered materials in works of art and documents. Furthermore, we present super-resolved images of an ancient document on parchment, showcasing the effectiveness of our proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv für Mikroskopische Anatomie, vol. 9, no. 1, pp. 413–468, dec 1873.
  2. C.-B. Juang, L. Finzi, and C. J. Bustamante, “Design and application of a computer-controlled confocal scanning differential polarization microscope,” Review of Scientific Instruments, vol. 59, no. 11, pp. 2399–2408, Nov. 1988.
  3. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, “Biomedical applications of terahertz spectroscopy and imaging,” Trends in Biotechnology, vol. 34, no. 10, pp. 810–824, Oct. 2016.
  4. K. Wang, D.-W. Sun, and H. Pu, “Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry,” Trends in Food Science & Technology, vol. 67, pp. 93–105, Sep. 2017.
  5. Q. Wang, L. Xie, and Y. Ying, “Overview of imaging methods based on terahertz time-domain spectroscopy,” Applied Spectroscopy Reviews, vol. 57, no. 3, pp. 249–264, Jan. 2021.
  6. M. Koch, D. M. Mittleman, J. Ornik, and E. Castro-Camus, “Terahertz time-domain spectroscopy,” Nature Reviews Methods Primers, vol. 3, no. 1, Jun. 2023.
  7. J. S. Totero Gongora, L. Olivieri, L. Peters, J. Tunesi, V. Cecconi, A. Cutrona, R. Tucker, V. Kumar, A. Pasquazi, and M. Peccianti, “Route to intelligent imaging reconstruction via terahertz nonlinear ghost imaging,” Micromachines, vol. 11, no. 5, p. 521, May 2020.
  8. F. Yuan, S. Zhou, T. Cheng, and Y. Liu, “A low- and high-resolution terahertz image pair construction method with gradient fusion for learning-based super-resolution,” IEEE Access, vol. 10, pp. 132 506–132 514, 2022.
  9. T. Lei, B. Tobin, Z. Liu, S.-Y. Yang, and D.-W. Sun, “A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products,” Analytica Chimica Acta, vol. 1181, p. 338898, oct 2021.
  10. M. Ljubenović, A. Artesani, S. Bonetti, and A. Traviglia, “Super-resolution of thz time-domain images based on low-rank representation,” in 2023 Sixth International Workshop on Mobile Terahertz Systems (IWMTS).   IEEE, Jul. 2023.
  11. T. Yu, X. Zuo, W. Liu, and C. Gong, “0.1thz super-resolution imaging based on 3d printed confocal waveguides,” Optics Communications, vol. 459, p. 124896, mar 2020.
  12. X. Chen, S. Zhong, Y. Hou, R. Cao, W. Wang, D. Li, Q. Dai, D. Kim, and P. Xi, “Superresolution structured illumination microscopy reconstruction algorithms: a review,” Light: Science and Applications, vol. 12, no. 1, jul 2023.
  13. F. Ströhl and C. F. Kaminski, “Frontiers in structured illumination microscopy,” Optica, vol. 3, no. 6, p. 667, Jun. 2016.
  14. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. SHORT COMMUNICATION,” Journal of Microscopy, vol. 198, no. 2, pp. 82–87, may 2000.
  15. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt., vol. 16, no. 7, pp. 1971–1974, Jul 1977. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?URI=ao-16-7-1971
  16. S. H. Phing, A. Mazhorova, M. Shalaby, M. Peccianti, M. Clerici, A. Pasquazi, Y. Ozturk, J. Ali, and R. Morandotti, “Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique,” Scientific Reports, vol. 5, no. 1, feb 2015.
  17. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Optics Express, vol. 16, no. 3, p. 1786, 2008.
  18. C. Ciano, M. Flammini, V. Giliberti, P. Calvani, E. DelRe, F. Talarico, M. Torre, M. Missori, and M. Ortolani, “Confocal imaging at 0.3 THz with depth resolution of a painted wood artwork for the identification of buried thin metal foils,” IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 4, pp. 390–396, jul 2018.
  19. N. M. Burford and M. O. El-Shenawee, “Review of terahertz photoconductive antenna technology,” Optical Engineering, vol. 56, no. 1, p. 010901, Jan. 2017.
  20. R. Fastampa, L. Pilozzi, and M. Missori, “Cancellation of fabry-perot interference effects in terahertz time-domain spectroscopy of optically thin samples,” Physical Review A, vol. 95, no. 6, p. 063831, jun 2017.
  21. M. Flammini, E. Pontecorvo, V. Giliberti, C. Rizza, A. Ciattoni, M. Ortolani, and E. DelRe, “Evanescent-wave filtering in images using remote terahertz structured illumination,” Physical Review Applied, vol. 8, no. 5, p. 054019, nov 2017.
  22. M. Naftaly and A. Gregory, “Terahertz and microwave optical properties of single-crystal quartz and vitreous silica and the behavior of the boson peak,” Applied Sciences, vol. 11, p. 6733, 07 2021.
  23. B. Di Napoli, S. Franco, L. Severini, M. Tumiati, E. Buratti, M. Titubante, V. Nigro, N. Gnan, L. Micheli, B. Ruzicka, C. Mazzuca, R. Angelini, M. Missori, and E. Zaccarelli, “Gellan gum microgels as effective agents for a rapid cleaning of paper,” ACS Applied Polymer Materials, vol. 2, no. 7, pp. 2791–2801, May 2020.
  24. M. Missori, D. Pawcenis, J. Bagniuk, A. M. Conte, C. Violante, M. Maggio, M. Peccianti, O. Pulci, and J. Łojewska, “Quantitative diagnostics of ancient paper using THz time-domain spectroscopy,” Microchemical Journal, vol. 142, pp. 54–61, nov 2018.
  25. M. Peccianti, R. Fastampa, A. M. Conte, O. Pulci, C. Violante, J. Łojewska, M. Clerici, R. Morandotti, and M. Missori, “Terahertz absorption by cellulose: Application to ancient paper artifacts,” Physical Review Applied, vol. 7, no. 6, p. 064019, jun 2017.
  26. T. Bardon, R. K. May, J. B. Jackson, G. Beentjes, G. de Bruin, P. F. Taday, and M. Strlič, “Contrast in terahertz images of archival documents—part i: Influence of the optical parameters from the ink and support,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, no. 4, pp. 443–466, Jan. 2017.
  27. A. A. Paraipan, N. Luchetti, A. Mosca Conte, O. Pulci, and M. Missori, “Low-frequency vibrations of saccharides using terahertz time-domain spectroscopy and ab-initio simulations,” Applied Sciences, vol. 13, no. 17, p. 9719, Aug. 2023.
  28. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev., vol. 5, no. 1, pp. 124–166, 2011.
  29. W. Henry and et al., “Parchment treatments,” in Paper Conservation Catalog.   Washington D.C.: American Institute for Conservation Book and Paper Group., 1988, ch. 18. [Online]. Available: http://cool.conservation-us.org/coolaic/sg/bpg/pcc/18_parchment.pdf
  30. M. Aceto, A. Agostino, G. Fenoglio, A. Idone, M. Gulmini, M. Picollo, P. Ricciardi, and J. K. Delaney, “Characterisation of colourants on illuminated manuscripts by portable fibre optic uv-visible-nir reflectance spectrophotometry,” Analytical Methods, vol. 6, no. 5, p. 1488, 2014.
  31. M. Missori, “Optical spectroscopy of ancient paper and textiles,” Il Nuovo Cimento C, vol. 39, pp. 1–10, 2016.
  32. M. Sbroscia, M. Cestelli-Guidi, F. Colao, S. Falzone, C. Gioia, P. Gioia, C. Marconi, D. Mirabile Gattia, E. Loreti, M. Marinelli, M. Missori, F. Persia, L. Pronti, M. Romani, A. Sodo, G. Verona-Rinati, M. Ricci, and R. Fantoni, “Multi-analytical non-destructive investigation of pictorial apparatuses of “villa della piscina” in rome,” Microchemical Journal, vol. 153, p. 104450, Mar. 2020.
  33. P. U. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Optics Letters, vol. 20, no. 8, p. 807, Apr. 1995.
  34. S. Tofani, D. C. Zografopoulos, M. Missori, R. Fastampa, and R. Beccherelli, “Terahertz focusing properties of polymeric zone plates characterized by a modified knife-edge technique,” Journal of the Optical Society of America B, vol. 36, no. 5, p. D88, mar 2019.
  35. T. Silvia, Z. D. C., M. Mauro, F. Renato, and B. Romeo, “High-resolution binary zone plate in double-sided configuration for terahertz radiation focusing,” IEEE Photonics Technology Letters, vol. 31, no. 2, pp. 117–120, Jan. 2019.
  36. T. Bardon, R. K. May, P. F. Taday, and M. Strlič, “Systematic study of terahertz time-domain spectra of historically informed black inks,” The Analyst, vol. 138, no. 17, p. 4859, 2013.
  37. T. Bardon, R. K. May, P. F. Taday, and M. Strlic, “Contrast in terahertz images of archival documents—part ii: Influence of topographic features,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 38, no. 4, pp. 467–482, Jan. 2017.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com