Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flatness Improves Backbone Generalisation in Few-shot Classification (2404.07696v1)

Published 11 Apr 2024 in cs.LG and cs.CV

Abstract: Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. Surprisingly, most efforts have only focused on developing architectures for easing the adaptation to the target domain without considering the importance of backbone training for good generalisation. We show that flatness-aware backbone training with vanilla fine-tuning results in a simpler yet competitive baseline compared to the state-of-the-art. Our results indicate that for in- and cross-domain FSC, backbone training is crucial to achieving good generalisation across different adaptation methods. We advocate more care should be taken when training these models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets