Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Effective-one-body waveform model for non-circularized, planar, coalescing black hole binaries: the importance of radiation reaction (2404.05288v3)

Published 8 Apr 2024 in gr-qc

Abstract: We present an updated version of the TEOBResumS-Dali effective-one-body (EOB) waveform model for spin aligned binaries on non-circularized orbits. Recently computed 4PN (nonspinning) terms are incorporated in the waveform and radiation reaction. The model is informed by a restricted sample ($\sim60$) of spin-aligned, quasi-circular, Numerical Relativity (NR) simulations. In the quasi-circular limit, the model displays EOB/NR unfaithfulness ${\bar{F}}{\rm max}{\rm EOBNR}\lesssim 10{-2}$ (with median~ $1.06\times 10{-3}$) (with Advanced LIGO noise and in the total mass range $10-200M\odot$) for the dominant $\ell=m=2$ mode all over the 534 spin-aligned configurations available through the Simulating eXtreme Spacetime catalog of NR waveforms. Similar figures are also obtained with the 28 public eccentric SXS simulations and good compatibility between EOB and NR scattering angles is found. The quasi-circular limit of TEOBResumS-Dali is also found to be highly consistent with the TEOBResumS-GIOTTO quasi-circular model. We then systematically explore the importance of NR-tuning {\it also} the radiation reaction of the system. When this is done, the median of the distribution of quasi-circular ${\bar{F}}{\rm max}_{\rm EOBNR}$ is lowered to $3.92\times 10{-4}$, though balanced by a tail up to $\sim 0.1$ for large, positive spins. The same is true for the eccentric-inspiral datasets. We conclude that an improvement of the analytical description of the spin-dependent flux (and its interplay with the conservative part) is likely to be the cornerstone to lower the EOB/NR unfaithfulness below the $10{-4}$ level all over the parameter space, thus grazing the current NR uncertainties as well as the expected needs for next generation of GW detector like Einstein Telescope.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. T. Hinderer and S. Babak, Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Phys. Rev. D96, 104048 (2017), arXiv:1707.08426 [gr-qc] .
  2. T. Damour, B. R. Iyer, and A. Nagar, Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries, Phys. Rev. D79, 064004 (2009), arXiv:0811.2069 [gr-qc] .
  3. T. Damour, A. Nagar, and S. Bernuzzi, Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion, Phys.Rev. D87, 084035 (2013), arXiv:1212.4357 [gr-qc] .
  4. A. Nagar and P. Rettegno, Next generation: Impact of high-order analytical information on effective one body waveform models for noncircularized, spin-aligned black hole binaries, Phys. Rev. D 104, 104004 (2021), arXiv:2108.02043 [gr-qc] .
  5. S. Hopper, A. Nagar, and P. Rettegno, Strong-field scattering of two spinning black holes: Numerics versus analytics, Phys. Rev. D 107, 124034 (2023), arXiv:2204.10299 [gr-qc] .
  6. T. Andrade et al., Towards numerical-relativity informed effective-one-body waveforms for dynamical capture black hole binaries,   (2023), arXiv:2307.08697 [gr-qc] .
  7. S. Albanesi, A. Nagar, and S. Bernuzzi, Effective one-body model for extreme-mass-ratio spinning binaries on eccentric equatorial orbits: Testing radiation reaction and waveform, Phys. Rev. D 104, 024067 (2021), arXiv:2104.10559 [gr-qc] .
  8. D. Bini and T. Damour, Gravitational radiation reaction along general orbits in the effective one-body formalism, Phys.Rev. D86, 124012 (2012), arXiv:1210.2834 [gr-qc] .
  9. A. Ramos-Buades, A. Buonanno, and J. Gair, Bayesian inference of binary black holes with inspiral-merger-ringdown waveforms using two eccentric parameters, Phys. Rev. D 108, 124063 (2023), arXiv:2309.15528 [gr-qc] .
  10. T. Damour, B. R. Iyer, and B. S. Sathyaprakash, Improved filters for gravitational waves from inspiralling compact binaries, Phys. Rev. D57, 885 (1998), arXiv:gr-qc/9708034 [gr-qc] .
  11. G. Faye, L. Blanchet, and B. R. Iyer, Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order, Class. Quant. Grav. 32, 045016 (2015), arXiv:1409.3546 [gr-qc] .
  12. R. Fujita and B. R. Iyer, Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarizations and associated factorized resummed waveforms for a particle in circular orbit around a Schwarzschild black hol, Phys. Rev. D82, 044051 (2010), arXiv:1005.2266 [gr-qc] .
  13. T. Damour and A. Nagar, An improved analytical description of inspiralling and coalescing black-hole binaries, Phys. Rev. D79, 081503 (2009), arXiv:0902.0136 [gr-qc] .
  14. A. Nagar and A. Shah, Factorization and resummation: A new paradigm to improve gravitational wave amplitudes, Phys. Rev. D94, 104017 (2016), arXiv:1606.00207 [gr-qc] .
  15. F. Messina, A. Maldarella, and A. Nagar, Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. II: the higher multipolar modes, Phys. Rev. D97, 084016 (2018), arXiv:1801.02366 [gr-qc] .
  16. T. Damour and A. Nagar, Comparing Effective-One-Body gravitational waveforms to accurate numerical data, Phys. Rev. D77, 024043 (2008), arXiv:0711.2628 [gr-qc] .
  17. T. Damour and A. Nagar, New effective-one-body description of coalescing nonprecessing spinning black-hole binaries, Phys.Rev. D90, 044018 (2014), arXiv:1406.6913 [gr-qc] .
  18. A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D59, 084006 (1999), arXiv:gr-qc/9811091 .
  19. D. Bini, T. Damour, and A. Geralico, Novel approach to binary dynamics: application to the fifth post-Newtonian level, Phys. Rev. Lett. 123, 231104 (2019), arXiv:1909.02375 [gr-qc] .
  20. A. Placidi, P. Rettegno, and A. Nagar, Gravitational spin-orbit coupling through the third-subleading post-Newtonian order: exploring spin-gauge flexibility,   (2024), arXiv:2401.12290 [gr-qc] .
  21. Q. Henry, S. Marsat, and M. Khalil, Spin contributions to the gravitational-waveform modes for spin-aligned binaries at the 3.5PN order, Phys. Rev. D 106, 124018 (2022), arXiv:2209.00374 [gr-qc] .
  22. I. Hinder, L. E. Kidder, and H. P. Pfeiffer, An eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory,   (2017), arXiv:1709.02007 [gr-qc] .
  23. Updated Advanced LIGO sensitivity design curve, https://dcc.ligo.org/LIGO-T1800044/public.
  24. S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  25. L. Pompili et al., Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes,   (2023), arXiv:2303.18039 [gr-qc] .
  26. D. Ferguson et al., Second MAYA Catalog of Binary Black Hole Numerical Relativity Waveforms,   (2023), arXiv:2309.00262 [gr-qc] .
  27. SXS Gravitational Waveform Database, https://data.black-holes.org/waveforms/index.html.
  28. R. Fujita, Gravitational radiation for extreme mass ratio inspirals to the 14th post-Newtonian order, Prog.Theor.Phys. 127, 583 (2012), arXiv:1104.5615 [gr-qc] .
  29. V. Fantini, A. Nagar, and M. Panzeri, in preparation,  (2024).
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com