Constraining Axion-Like Particles Dark Matter in Coma Berenices with FAST (2404.04881v2)
Abstract: Axions and axion-like particles (ALPs) appear in many extensions of the Standard Model and are being investigated as promising dark matter (DM) candidates. One viable methodology for their detection involves the investigation of the line-like radio emissions from the dwarf spheroidal galaxy, potentially originating from the radiative decay of ALPs or the conversion of ALPs in the magnetic field. In this work, we constrain the properties of ALPs using the 2-hour radio observation of Coma Berenices through the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The $\rm 95\%$ upper limits of the ALP-photon coupling are calculated for the ALP decay and conversion scenarios, respectively. Note that the sensitive ALP masses for FAST range from $\sim \mu \rm eV$ to tens of $\mu \rm eV$, where ALP can explain the DM abundance naturally. However, our limits are weaker than those of the CAST helioscope, which can provide an independent and complementary check on the ALP non-detection for ground experiments. Furthermore, we evaluate the expected sensitivity on the ALP of FAST with its full designed bandwidth (70 $\rm MHz$ - 3 $\rm GHz$) for 100 hours of observation time. Our results indicate that, even with the exceptional sensitivity of the FAST, it is challenging to surpass the existing experimental constraints on ALP DM using radio observation of dSphs, unless the possible enhancements of ALP signals by compact stars in dSphs are considered.
- Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models. Astrophys. J. 712, 147–158. doi:10.1088/0004-637X/712/1/147, arXiv:1001.4531.
- Axion Dark Matter, in: 2022 Snowmass Summer Study. arXiv:2203.14923.
- Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6. doi:10.1051/0004-6361/201833910, arXiv:1807.06209. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 116, 161101. doi:10.1103/PhysRevLett.116.161101, arXiv:1603.06978.
- Direct Detection of Dark Photon Dark Matter Using Radio Telescopes. Phys. Rev. Lett. 130, 181001. doi:10.1103/PhysRevLett.130.181001, arXiv:2207.05767.
- New CAST Limit on the Axion-Photon Interaction. Nature Phys. 13, 584–590. doi:10.1038/nphys4109, arXiv:1705.02290.
- WISPy Cold Dark Matter. JCAP 06, 013. doi:10.1088/1475-7516/2012/06/013, arXiv:1201.5902.
- Large scale microwave cavity search for dark matter axions. Phys. Rev. D 64, 092003. doi:10.1103/PhysRevD.64.092003.
- Phenomenological aspects of axion-like particles in cosmology and astrophysics. Ph.D. thesis. Witwatersrand U. arXiv:2203.01945.
- Any light particle search II —Technical Design Report. JINST 8, T09001. doi:10.1088/1748-0221/8/09/T09001, arXiv:1302.5647.
- Stellar dynamics and dark matter in Local Group dwarf galaxies. Nature Astron. 6, 659–672. doi:10.1038/s41550-022-01638-7, arXiv:2205.07821.
- Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions. Astrophys. J. 654, 897–906. doi:10.1086/509718, arXiv:astro-ph/0608448.
- Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature 311, 517–525. doi:10.1038/311517a0.
- CLUMPY : Jeans analysis, γ𝛾\gammaitalic_γ-ray and ν𝜈\nuitalic_ν fluxes from dark matter (sub-)structures. Comput. Phys. Commun. 200, 336–349. doi:10.1016/j.cpc.2015.11.012, arXiv:1506.07628.
- Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs. Mon. Not. Roy. Astron. Soc. 453, 849–867. doi:10.1093/mnras/stv1601, arXiv:1504.02048.
- Extended Search for the Invisible Axion with the Axion Dark Matter Experiment. Phys. Rev. Lett. 124, 101303. doi:10.1103/PhysRevLett.124.101303, arXiv:1910.08638.
- Looking for Axion Dark Matter in Dwarf Spheroidals. Phys. Rev. D 98, 083024. doi:10.1103/PhysRevD.98.083024, arXiv:1805.08780. [Erratum: Phys.Rev.D 99, 089901 (2019)].
- Detecting the Stimulated Decay of Axions at RadioFrequencies. JCAP 03, 027. doi:10.1088/1475-7516/2019/03/027, arXiv:1811.08436.
- Predictions for Axion Couplings from ALP Cogenesis. JHEP 01, 172. doi:10.1007/JHEP01(2021)172, arXiv:2006.04809.
- ARCADE 2 Measurement of the Extra-Galactic Sky Temperature at 3-90 GHz. Astrophys. J. 734, 5. doi:10.1088/0004-637X/734/1/5, arXiv:0901.0555.
- The isotropic radio background revisited. JCAP 04, 008. doi:10.1088/1475-7516/2014/04/008, arXiv:1402.2218.
- Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres. Phys. Rev. Lett. 125, 171301. doi:10.1103/PhysRevLett.125.171301, arXiv:2004.00011.
- Extraterrestrial Axion Search with the Breakthrough Listen Galactic Center Survey. Phys. Rev. Lett. 129, 251102. doi:10.1103/PhysRevLett.129.251102, arXiv:2202.08274.
- Constraints on dark matter annihilation from the FAST observation of the Coma Berenices dwarf galaxy. Phys. Rev. D 107, 103011. doi:10.1103/PhysRevD.107.103011, arXiv:2209.15590.
- Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres. Phys. Rev. Lett. 121, 241102. doi:10.1103/PhysRevLett.121.241102, arXiv:1804.03145.
- Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources. Phys. Rev. D 97, 123001. doi:10.1103/PhysRevD.97.123001, arXiv:1803.08230.
- An introduction to axions and their detection. SciPost Phys. Lect. Notes 45, 1. doi:10.21468/SciPostPhysLectNotes.45, arXiv:2109.07376.
- New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 102, 89–159. doi:10.1016/j.ppnp.2018.05.003, arXiv:1801.08127.
- The fundamental performance of FAST with 19-beam receiver at L band. Research in Astronomy and Astrophysics 20, 064. doi:10.1088/1674-4527/20/5/64, arXiv:2002.01786.
- Constraining superheavy decaying dark matter with directional ultra-high energy gamma-ray limits. JCAP 11, 016. doi:10.1088/1475-7516/2021/11/016, arXiv:2005.04085.
- Searching for relativistic axions in the sky arXiv:2212.04647.
- Radio Signal of Axion-Photon Conversion in Neutron Stars: A Ray Tracing Analysis. Phys. Rev. D 101, 123003. doi:10.1103/PhysRevD.101.123003, arXiv:1912.08815.
- Limits on axion-like particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT. Phys. Rev. D 103, 083003. doi:10.1103/PhysRevD.103.083003, arXiv:2008.09464.
- Constraints on axion-like particle properties with TeV gamma-ray observations of Galactic sources. J. Cosmol. Astropart. Phys. 2019, 042. doi:10.1088/1475-7516/2019/06/042, arXiv:1804.07186.
- Axion Cosmology. Phys. Rept. 643, 1–79. doi:10.1016/j.physrep.2016.06.005, arXiv:1510.07633.
- Multiwavelength Analysis of Dark Matter Annihilation and RX-DMFIT. JCAP 09, 027. doi:10.1088/1475-7516/2017/09/027, arXiv:1705.09384.
- Turning the Tides on the Ultra-Faint Dwarf Spheroidal Galaxies: Coma Berenices and Ursa Major II. Astron. J. 140, 138. doi:10.1088/0004-6256/140/1/138, arXiv:0910.3946.
- Axion Clouds around Neutron Stars arXiv:2307.11811.
- Single dish calibration techniques at radio wavelengths. ASP Conf. Ser. 278, 293. arXiv:astro-ph/0203001.
- FAST: Its Scientific Achievements and Prospects. The Innovation 1, 100053. doi:10.1016/j.xinn.2020.100053, arXiv:2011.13542.
- Exploring the Role of Axions and Other WISPs in the Dark Universe. Phys. Dark Univ. 1, 116–135. doi:10.1016/j.dark.2012.10.008, arXiv:1210.5081.
- Detecting Axion Dark Matter with Radio Lines from Neutron Star Populations. Phys. Rev. D 99, 123021. doi:10.1103/PhysRevD.99.123021, arXiv:1811.01020.
- Astrophysical Haloscopes. Phys. Rev. D 96, 103014. doi:10.1103/PhysRevD.96.103014, arXiv:1708.08908.
- The Kinematics of the Ultra-Faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J. 670, 313–331. doi:10.1086/521816, arXiv:0706.0516.
- The Most Dark Matter Dominated Galaxies: Predicted Gamma-ray Signals from the Faintest Milky Way Dwarfs. Astrophys. J. 678, 614. doi:10.1086/529488, arXiv:0709.1510.
- Exploring axion dark matter through radio signals from magnetic white dwarf stars. Phys. Rev. D 103, 115021. doi:10.1103/PhysRevD.103.115021, arXiv:2101.02585.
- Detecting axion dark matter through the radio signal from Omega Centauri. Phys. Rev. D 104, 103015. doi:10.1103/PhysRevD.104.103015, arXiv:2109.00877.
- Axion-photon conversion in neutron star magnetospheres: The role of the plasma in the Goldreich-Julian model. Phys. Rev. D 104, 103030. doi:10.1103/PhysRevD.104.103030, arXiv:2104.07670.
- Searching for the possible signal of the photon-axionlike particle oscillation in the combined GeV and TeV spectra of supernova remnants. Physical Review D 100, 123004. doi:10.1103/PhysRevD.100.123004, arXiv:1911.08096.
- Searching for spectral oscillations due to photon-axionlike particle conversion using the Fermi-LAT observations of bright supernova remnants. Physical Review D 97, 063003. doi:10.1103/PhysRevD.97.063003, arXiv:1801.01646.
- Extragalactic H I 21-cm absorption line observations with the Five-hundred-meter Aperture Spherical radio Telescope. mnras 503, 5385–5396. doi:10.1093/mnras/stab754, arXiv:2103.06573.
- New bounds on axionlike particles from the Fermi Large Area Telescope observation of PKS 2155 -304. Physical Review D 97, 063009. doi:10.1103/PhysRevD.97.063009, arXiv:1802.08420.
- Searching for axion dark matter with the MeerKAT radio telescope. Phys. Rev. D 106, 083006. doi:10.1103/PhysRevD.106.083006, arXiv:2209.09695.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.