Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-Preserving Traceable Functional Encryption for Inner Product (2404.04861v2)

Published 7 Apr 2024 in cs.CR

Abstract: Functional encryption introduces a new paradigm of public key encryption that decryption only reveals the function value of encrypted data. To curb key leakage issues and trace users in FE-IP, a new primitive called traceable functional encryption for inner product (TFE-IP) has been proposed. However, the privacy protection of user's identities has not been considered in the existing TFE-IP schemes. In order to balance privacy and accountability, we propose the concept of privacy-preserving traceable functional encryption for inner product (PPTFE-IP) and give a concrete construction. Our scheme provides the following features: (1) To prevent key sharing, a user's key is bound with both his/her identity and a vector; (2) The key generation center (KGC) and a user execute a two-party secure computing protocol to generate a key without the former knowing anything about the latter's identity; (3) Each user can verify the correctness of his/her key; (4) A user can calculate the inner product of the two vectors embedded in his/her key and in a ciphertext; (5) Only the tracer can trace the identity embedded in a key. The security of our scheme is formally reduced to well-known complexity assumptions, and the implementation is conducted to evaluate its efficiency. The novelty of our scheme is to protect users' privacy and provide traceability if required.

Summary

We haven't generated a summary for this paper yet.