ChoreoVis: Planning and Assessing Formations in Dance Choreographies (2404.04100v1)
Abstract: Sports visualization has developed into an active research field over the last decades. Many approaches focus on analyzing movement data recorded from unstructured situations, such as soccer. For the analysis of choreographed activities like formation dancing, however, the goal differs, as dancers follow specific formations in coordinated movement trajectories. To date, little work exists on how visual analytics methods can support such choreographed performances. To fill this gap, we introduce a new visual approach for planning and assessing dance choreographies. In terms of planning choreographies, we contribute a web application with interactive authoring tools and views for the dancers' positions and orientations, movement trajectories, poses, dance floor utilization, and movement distances. For assessing dancers' real-world movement trajectories, extracted by manual bounding box annotations, we developed a timeline showing aggregated trajectory deviations and a dance floor view for detailed trajectory comparison. Our approach was developed and evaluated in collaboration with dance instructors, showing that introducing visual analytics into this domain promises improvements in training efficiency for the future.
- Visualization and visual analytics approaches for image and video datasets: A survey. ACM Transactions on Interactive Intelligent Systems 13, 1 (2023), 1–41. doi:10.1145/3576935.
- Visualization of time-oriented data, vol. 4. Springer, 2011. doi:10.1007/978-1-4471-7527-8.
- State of the art report on video-based graphics and video visualization. Computer Graphics Forum 31, 8 (2012), 2450–2477. doi:10.1111/j.1467-8659.2012.03158.x.
- Visual planning and analysis of latin formation dance patterns. In EuroVis 2023 - Posters (2023), Gillmann C., Krone M., Lenti S., (Eds.), The Eurographics Association. doi:10.2312/evp.20231076.
- Timelines revisited: A design space and considerations for expressive storytelling. IEEE Transactions on Visualization and Computer Graphics 23, 9 (2016), 2151–2164. doi:10.1109/TVCG.2016.2614803.
- D³ data-driven documents. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2301–2309. doi:10.1109/TVCG.2011.185.
- Boren T., Ramey J.: Thinking aloud: Reconciling theory and practice. IEEE Transactions on Professional Communication 43, 3 (2000), 261–278. doi:10.1109/47.867942.
- Bradski G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
- Gameflow: Narrative visualization of nba basketball games. IEEE Transactions on Multimedia 18, 11 (2016), 2247–2256. doi:10.1109/TMM.2016.2614221.
- Coenen J., Moere A. V.: Public data visualization: Analyzing local running statistics on situated displays. Computer Graphics Forum 40, 3 (2021), 159–171. doi:10.1111/cgf.14297.
- Baseball4D: A tool for baseball game reconstruction & visualization. In IEEE Conference on Visual Analytics Science and Technology (VAST) (2014), pp. 23–32. doi:10.1109/VAST.2014.7042478.
- Glyph-based video visualization for semen analysis. IEEE Transactions on Visualization and Computer Graphics 21, 8 (2013), 980–993. doi:10.1109/TVCG.2013.265.
- Du M., Yuan X.: A survey of competitive sports data visualization and visual analysis. Journal of Visualization 24 (2021), 47–67. doi:10.1007/s12650-020-00687-2.
- Tapir: Tracking any point with per-frame initialization and temporal refinement. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV) (2023), pp. 10027–10038. doi:10.1109/ICCV51070.2023.00923.
- German Dancing Federation (DTV): Wertungsrichtlinien im DTV für formationswettbewerbe standard und latein. https://www.tanzsport.de/files/tanzsport/downloads/sportwelt/formationen/wrichtl-f.pdf, 1998.
- Dancevis: Toward better understanding of online cheer and dance training. Journal of Visualization 25, 1 (2022), 159–174. doi:10.1007/s12650-021-00783-x.
- Interactive schematic summaries for faceted exploration of surveillance video. IEEE Transactions on Multimedia 15, 4 (2013), 908–920. doi:10.1109/TMM.2013.2238521.
- Scalable video visual analytics. Information Visualization 14, 1 (2015), 10–26. doi:10.1177/1473871613488571.
- HOLYFEET, LLC.: FORMI: The collaborative choreography design tool. https://www.formistudio.app/, 2023. Last accessed on 2023-11-30.
- Heyen F., Sedlmair M.: Augmented reality visualization for musical instrument learning. In International Society for Music Information Retrieval Conference (ISMIR) Late-Breaking Demo (2022).
- ISeeCube: Visual analysis of gaze data for video. In Proceedings of the Symposium on Eye Tracking Research and Applications (2014), pp. 43–50. doi:10.1145/2578153.2578158.
- A survey on visualizations for musical data. In Computer Graphics Forum (2020), vol. 39, pp. 82–110. doi:10.1111/cgf.13905.
- The ball is in our court: Conducting visualization research with sports experts. IEEE Computer Graphics and Applications 43, 1 (2023), 84–90. doi:10.1109/MCG.2022.3222042.
- BKViz: A basketball visual analysis tool. IEEE Computer Graphics and Applications 36, 6 (2016), 58–68. doi:10.1109/MCG.2016.124.
- Meghdadi A. H., Irani P.: Interactive exploration of surveillance video through action shot summarization and trajectory visualization. IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2119–2128. doi:10.1109/TVCG.2013.168.
- CorpusVis: Visual analysis of digital sheet music collections. In Computer Graphics Forum (2022), vol. 41, pp. 283–294. doi:10.1111/cgf.14540.
- On the Beat: Analysing and Evaluating Synchronicity in Dance Performances. In Vision, Modeling, and Visualization (2023), Guthe M., Grosch T., (Eds.), The Eurographics Association. doi:10.2312/vmv.20231230.
- Muhammad M. N.: Visualizing Dance Formations: The Choreographer’s Tool. Bachelor’s thesis, Bryn Mawr College, 2009.
- Running event visualization using videos from multiple cameras. In Proceedings of the International Workshop on Multimedia Content Analysis in Sports (2019), pp. 82–90. doi:10.1145/3347318.3355528.
- TimeSplines: Sketch-based authoring of flexible and idiosyncratic timelines. IEEE Transactions on Visualization and Computer Graphics 30, 1 (2024), 34–44. doi:10.1109/TVCG.2023.3326520.
- CourtTime: Generating actionable insights into tennis matches using visual analytics. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2019), 397–406. doi:10.1109/TVCG.2019.2934243.
- Page M., Moere A.: Towards classifying visualization in team sports. In International Conference on Computer Graphics, Imaging and Visualisation (CGIV’06) (2006), pp. 24–29. doi:10.1109/CGIV.2006.85.
- Visualization of sports using motion trajectories: Providing insights into performance, style, and strategy. In Proceedings of IEEE Visualization (VIS) (2001), pp. 75–82. doi:10.1109/VISUAL.2001.964496.
- State of the art of sports data visualization. In Computer Graphics Forum (2018), vol. 37, pp. 663–686. doi:10.1111/cgf.13447.
- Tennivis: Visualization for tennis match analysis. IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 2339–2348. doi:10.1109/TVCG.2014.2346445.
- Visualization for ai-assisted composing. In International Society for Music Information Retrieval Conference (ISMIR) (2022).
- Charticulator: Interactive construction of bespoke chart layouts. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2019), 789–799. doi:10.1109/TVCG.2018.2865158.
- Saito Y., Itoh T.: MusiCube: A visual music recommendation system featuring interactive evolutionary computing. In Proceedings of the 2011 Visual Information Communication-International Symposium (2011), pp. 1–6. doi:10.1145/2016656.2016661.
- Bring it to the pitch: Combining video and movement data to enhance team sport analysis. IEEE Transactions on Visualization and Computer Graphics 24, 1 (2018), 13–22. doi:10.1109/TVCG.2017.2745181.
- Design study methodology: Reflections from the trenches and the stacks. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2431–2440. doi:10.1109/TVCG.2012.213.
- Choreographics: An authoring tool for dance shows. Journal of Graphics Tools 17, 4 (2013), 159–176. doi:10.1080/2165347X.2014.909341.
- StageKeep: StageKeep: Collaboration for choreographers. https://stagekeep.com/, 2023. Last accessed on 2023-11-30.
- Stefanchuk A.: ArrangeUs: Dance formations made easy. https://apps.apple.com/de/app/arrangeus/id1502182540, 2023. Last accessed on 2023-11-30.
- Plotthread: Creating expressive storyline visualizations using reinforcement learning. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2020), 294–303. doi:10.1109/TVCG.2020.3030467.
- Visual analytics for video applications. it-Information Technology 57, 1 (2015), 30–36. doi:10.1515/itit-2014-1072.
- iTTVis: Interactive visualization of table tennis data. IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 709–718. doi:10.1109/TVCG.2017.2744218.
- Wood L. E.: Semi-structured interviewing for user-centered design. interactions 4, 2 (1997), 48–61. doi:10.1145/245129.245134.
- Wood J.: Visualizing personal progress in participatory sports cycling events. IEEE Computer Graphics and Applications 35, 4 (2015), 73–81. doi:10.1109/MCG.2015.71.
- World DanceSport Federation (WDSF): Wdsf competition rules. https://dancesport.app.box.com/s/j1thh09bgbg1ugcbr5zj, 2023.