Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tight stability bounds for entropic Brenier maps (2404.02855v1)

Published 3 Apr 2024 in math.PR and math.FA

Abstract: Entropic Brenier maps are regularized analogues of Brenier maps (optimal transport maps) which converge to Brenier maps as the regularization parameter shrinks. In this work, we prove quantitative stability bounds between entropic Brenier maps under variations of the target measure. In particular, when all measures have bounded support, we establish the optimal Lipschitz constant for the mapping from probability measures to entropic Brenier maps. This provides an exponential improvement to a result of Carlier, Chizat, and Laborde (2024). As an application, we prove near-optimal bounds for the stability of semi-discrete \emph{unregularized} Brenier maps for a family of discrete target measures.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.