Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropic pulling and diffusion diode in an Itô process (2404.02667v2)

Published 3 Apr 2024 in cond-mat.stat-mech, cond-mat.mes-hall, and cond-mat.soft

Abstract: Biological environments at micrometer scales and below are often crowded, and experience incessant stochastic thermal fluctuations. The presence of membranes/pores, and multiple biological entities in a constricted space can make the damping/diffusion inhomogeneous. This effect of inhomogeneity is presented by the diffusion becoming coordinate-dependent. In this paper, we analyze the consequence of inhomogeneity-induced coordinate-dependent diffusion on Brownian systems in thermal equilibrium under the It^o's interpretation. We argue that the presence of coordinate-dependent diffusion under It^o's formulation gives rise to an effective diffusion potential (and, equivalently an entropy) that can have substantial contribution to system's transport. This emergent force when looked at as of entropic origin it provides a physical basis of the notion of the entropic pulling postulated in the context of working of some biological systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. E. M. Purcell, Life at low reynolds number, American journal of physics 45, 3 (1977).
  2. W. Nachtigall, Hydromechanics and biology, Biophysics of structure and mechanism 8, 1 (1981).
  3. N. Cohen and J. H. Boyle, Swimming at low reynolds number: a beginners guide to undulatory locomotion, Contemporary Physics 51, 103 (2010).
  4. K. Neupane, F. Wang, and M. Woodside, Direct measurement of sequence-dependent transition path times and conformational diffusion in dna duplex formation, Biophysical Journal 112, 471a (2017).
  5. L. P. Faucheux and A. J. Libchaber, Confined brownian motion, Physical Review E 49, 5158 (1994).
  6. B. Lin, J. Yu, and S. A. Rice, Direct measurements of constrained brownian motion of an isolated sphere between two walls, Physical review E 62, 3909 (2000).
  7. P. Sharma, S. Ghosh, and S. Bhattacharya, A high-precision study of hindered diffusion near a wall, Applied Physics Letters 97 (2010).
  8. A. M. Berezhkovskii and D. E. Makarov, Communication: Coordinate-dependent diffusivity from single molecule trajectories, The Journal of chemical physics 147 (2017).
  9. R. B. Best and G. Hummer, Coordinate-dependent diffusion in protein folding, Proceedings of the National Academy of Sciences 107, 1088 (2010).
  10. C. J. Roussel and M. R. Roussel, Reaction–diffusion models of development with state-dependent chemical diffusion coefficients, Progress in biophysics and molecular biology 86, 113 (2004).
  11. A. Bhattacharyay, Equilibrium of a brownian particle with coordinate dependent diffusivity and damping: Generalized boltzmann distribution, Physica A: Statistical Mechanics and its Applications 515, 665 (2019).
  12. P. Goloubinoff and P. De Los Rios, The mechanism of hsp70 chaperones:(entropic) pulling the models together, Trends in biochemical sciences 32, 372 (2007).
  13. R. Sousa and E. M. Lafer, The physics of entropic pulling: a novel model for the hsp70 motor mechanism, International journal of molecular sciences 20, 2334 (2019).
  14. R. Sousa and E. M. Lafer, Keep the traffic moving: mechanism of the hsp70 motor, Traffic 7, 1596 (2006).
  15. P. De Los Rios and P. Goloubinoff, Hsp70 chaperones use atp to remodel native protein oligomers and stable aggregates by entropic pulling, Nature structural & molecular biology 23, 766 (2016).
  16. I. Ganesan and S. M. Theg, Structural considerations of folded protein import through the chloroplast toc/tic translocons, Febs Letters 593, 565 (2019).
  17. F. Yu and S. Sukenik, Structural preferences shape the entropic force of disordered protein ensembles, The Journal of Physical Chemistry B  (2023).
  18. W. Hwang and M. Karplus, Structural basis for power stroke vs. brownian ratchet mechanisms of motor proteins, Proceedings of the National Academy of Sciences 116, 19777 (2019).
  19. E. A. Craig, Hsp70 at the membrane: driving protein translocation, BMC biology 16, 1 (2018).
  20. N. Roos, Entropic forces in brownian motion, American Journal of Physics 82, 1161 (2014).
  21. R. M. Neumann, Entropic approach to brownian movement, American Journal of Physics 48, 354 (1980).
  22. A. Bhattacharyay, Equilibrium with coordinate dependent diffusion: Comparison of different stochastic processes, arXiv preprint arXiv:2309.06567  (2023).
  23. P. C. Bressloff, Stochastic processes in cell biology, Vol. 41 (Springer, 2014).
  24. L. J. Allen, An introduction to stochastic processes with applications to biology (CRC press, 2010).
  25. U. Alon, An introduction to systems biology: design principles of biological circuits (Chapman and Hall/CRC, 2019).
  26. L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, 2021).
  27. F. Sattin, Fick’s law and fokker–planck equation in inhomogeneous environments, Physics Letters A 372, 3941 (2008).
  28. M. Bengfort, H. Malchow, and F. M. Hilker, The fokker–planck law of diffusion and pattern formation in heterogeneous environments, Journal of mathematical biology 73, 683 (2016).
  29. F. Vázquez and F. Márkus, Non-fickian particle diffusion in confined plasmas and the transition from diffusive transport to density waves propagation, Physics of Plasmas 17 (2010).
  30. R. Maniar and A. Bhattacharyay, Random walk model for coordinate-dependent diffusion in a force field, Physica A: Statistical Mechanics and its Applications 584, 126348 (2021).
  31. M. Sharma and A. Bhattacharyay, Conversion of heat to work: An efficient inchworm, Physica Scripta 95, 105004 (2020).
  32. A. Dhawan and A. Bhattacharyay, Itô–distribution from gibbs measure and a comparison with experiment, Physica A: Statistical Mechanics and its Applications , 129599 (2024).
  33. A. Bhattacharyay, Generalization of stokes–einstein relation to coordinate dependent damping and diffusivity: an apparent conflict, Journal of Physics A: Mathematical and Theoretical 53, 075002 (2020).
  34. M. Sharma and A. Bhattacharyay, Spontaneous collective transport in a heat-bath, Physica A: Statistical Mechanics and its Applications 626, 129082 (2023).
  35. A. Bhattacharyay, Directed transport in equilibrium: A model study, Physica A: Statistical Mechanics and its Applications 391, 1111 (2012).

Summary

We haven't generated a summary for this paper yet.