Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Portfolio Optimization with Transformer-GAN Integration: A Novel Approach in the Black-Litterman Framework (2404.02029v3)

Published 2 Apr 2024 in cs.CE

Abstract: This study presents an innovative approach to portfolio optimization by integrating Transformer models with Generative Adversarial Networks (GANs) within the Black-Litterman (BL) framework. Capitalizing on Transformers' ability to discern long-range dependencies and GANs' proficiency in generating accurate predictive models, our method enhances the generation of refined predictive views for BL portfolio allocations. This fusion of our model with BL's structured method for merging objective views with market equilibrium offers a potent tool for modern portfolio management, outperforming traditional forecasting methods. Our integrated approach not only demonstrates the potential to improve investment decision-making but also contributes a new approach to capture the complexities of financial markets for robust portfolio optimization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com