Papers
Topics
Authors
Recent
2000 character limit reached

A Simple Collocation-Type Approach to Numerical Stochastic Homogenization (2404.01732v2)

Published 2 Apr 2024 in math.NA and cs.NA

Abstract: This paper proposes a novel collocation-type numerical stochastic homogenization method for prototypical stochastic homogenization problems with random coefficient fields of small correlation lengths. The presented method is based on a recently introduced localization technique that enforces a super-exponential decay of the basis functions relative to the underlying coarse mesh, resulting in considerable computational savings during the sampling phase. More generally, the collocation-type structure offers a particularly simple and computationally efficient construction in the stochastic setting with minimized communication between the patches where the basis functions of the method are computed. An error analysis that bridges numerical homogenization and the quantitative theory of stochastic homogenization is performed. In a series of numerical experiments, we study the effect of the correlation length and the discretization parameters on the approximation quality of the method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments. In Multiscale Modeling and Analysis for Materials Simulation, pages 197–272. World Scientific, 2011.
  2. S. Armstrong and J.-P. Daniel. Calderón–Zygmund estimates for stochastic homogenization. J. Funct. Anal., 270(1):312–329, 2016.
  3. Numerical homogenization beyond scale separation. Acta Numer., 30:1–86, 2021.
  4. M. Bebendorf. A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen, 22(4):751–756, 2003.
  5. Super-localized orthogonal decomposition for convection-dominated diffusion problems. arXiv preprint 2206.01975, 2022.
  6. A reduced basis super-localized orthogonal decomposition for reaction–convection–diffusion problems. J. Comput. Phys., 499:112698, 2024.
  7. X. Blanc and C. Le Bris. Homogenization Theory for Multiscale Problems. Springer, Cham, 2023.
  8. A. Bourgeat and A. Piatnitski. Approximations of effective coefficients in stochastic homogenization. Ann. Inst. Henri Poincaré Probab. Stat., 40(2):153–165, 2004.
  9. Multiscale model reduction—multiscale finite element methods and their generalizations, volume 212 of Applied Mathematical Sciences. Springer, Cham, 2023.
  10. An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation. C. r., Math., 353(9):801–806, 2015.
  11. The structure of fluctuations in stochastic homogenization. Commun. Math. Phys., 377:259 – 306, 2020.
  12. An improved high-order method for elliptic multiscale problems. SIAM J. Numer. Anal., 61(4):1918–1937, 2023.
  13. M. Duerinckx and F. Otto. Higher-order pathwise theory of fluctuations in stochastic homogenization. Stoch. PDE: Anal. Comp., 8:625 – 692, 2020.
  14. A priori error analysis of a numerical stochastic homogenization method. SIAM J. Numer. Anal., 59(2):660–674, 2021.
  15. A super-localized generalized finite element method. Numer. Math., 156(1):205–235, 2023.
  16. Super-localized orthogonal decomposition for high-frequency Helmholtz problems. Accepted for publication in SIAM J. Sci. Comput. (arXiv preprint 2112.11368), 2024.
  17. J. Fischer. The choice of representative volumes in the approximation of effective properties of random materials. Arch. Ration. Mech. Anal., 234(2):635–726, 2019.
  18. M. Feischl and D. Peterseim. Sparse compression of expected solution operators. SIAM J. Numer. Anal., 58(6):3144–3164, 2020.
  19. J. Fischer and C. Raithel. Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space. SIAM J. Math. Anal., 49(1):82–114, 2017.
  20. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on glauber dynamics. Invent. Math., 199(2):455–515, 2014.
  21. A regularity theory for random elliptic operators. Milan J. Math., 88(1):99–170, 2020.
  22. A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. of Prob., 39(3):779 – 856, 2011.
  23. A. Gloria and F. Otto. An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab., 22(1), 2012.
  24. D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Eng., 295:1–17, 2015.
  25. D. Gallistl and D. Peterseim. Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization. Multiscale Model. Simul., 15(4):1530–1552, 2017.
  26. D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasilocal effective diffusion tensors. Commun. Math. Sci., 17(3):637–651, 2019.
  27. M. Hauck and A. Målqvist. Super-localization of spatial network models. Accepted for publication in Numer. Math. (arXiv preprint 2210.07860), 2024.
  28. P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149–1175, 2013.
  29. M. Hauck and D. Peterseim. Multi-resolution localized orthogonal decomposition for Helmholtz problems. Multiscale Model. Simul., 20(2):657–684, 2022.
  30. M. Hauck and D. Peterseim. Super-localization of elliptic multiscale problems. Math. Comp., 92(342):981–1003, 2022.
  31. Numerical study in stochastic homogenization for elliptic partial differential equations: Convergence rate in the size of representative volume elements. Numer. Linear Algebra Appl., 27(3), 2020.
  32. J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972.
  33. R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067–1089, 2021.
  34. J.-C. Mourrat. Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math., 19(2):435–483, 2018.
  35. A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583–2603, 2014.
  36. A. Målqvist and D. Peterseim. Numerical Homogenization by Localized Orthogonal Decomposition. Society for Industrial and Applied Mathematics (SIAM), 2020.
  37. H. Owhadi and C. Scovel. Operator-adapted wavelets, fast solvers, and numerical homogenization, volume 35 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2019.
  38. An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal., 5:286–292 (1960), 1960.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.