Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Motivic interpretations for iterated integrals on some specific algebraic curves (2404.01678v3)

Published 2 Apr 2024 in math.NT

Abstract: Multiple zeta values (MZVs for short) can be represented as iterated integrals of $\mathbb{Q}$-rational algebraic differential forms on $\mathbb{P}1(\mathbb{C})\setminus{0, 1, \infty}$. This interpretation allows us to consider MZVs geometrically, and this is one of the motivations for Deligne--Goncharov, Terasoma et al. to give motivic interpretations of MZVs by using the theory of mixed Tate motives and the motivic fundamental groups. In this paper, we consider the iterated integrals on some rational curves over $\mathbb{Q}$ and study their arithmetic properties. They are an extension of MZVs and also include some other known special values such as multiple $\widetilde{T}$-values. Furthermore, we give motivic interpretations of them by investigating a relationship with motivic iterated integrals given by Goncharov. At this point, it is important to consider the base expansion and the Galois invariant part of the space of motivic iterated integrals. Finally, we denote that a motivic interpretation of the alternating multiple mixed values can be given by the same method. Our results also extend a part of author's previous work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Steven Charlton. On the evaluations of multiple s𝑠\displaystyle sitalic_s and t𝑡\displaystyle titalic_t values of the form s⁢(2(−)⁡,1,…,1,1(−)⁡)𝑠21…11\displaystyle s(\overset{{}_{(-)}}{2},1,\ldots,1,\overset{{}_{(-)}}{1})italic_s ( start_OVERACCENT ( - ) end_OVERACCENT start_ARG 2 end_ARG , 1 , … , 1 , start_OVERACCENT ( - ) end_OVERACCENT start_ARG 1 end_ARG ) and t⁢(2(−)⁡,1,…,1,1(−)⁡)𝑡21…11\displaystyle t(\overset{{}_{(-)}}{2},1,\ldots,1,\overset{{}_{(-)}}{1})italic_t ( start_OVERACCENT ( - ) end_OVERACCENT start_ARG 2 end_ARG , 1 , … , 1 , start_OVERACCENT ( - ) end_OVERACCENT start_ARG 1 end_ARG ), 2024.
  2. K-T. Chen. Iterated integrals of differential forms and loop space homology. Ann. of Math., 97(2):217–246, 1973.
  3. P. Deligne. Le groupe fondamental unipotent motivique de 𝔾m\μN\subscript𝔾𝑚subscript𝜇𝑁\displaystyle\mathbb{G}_{m}\backslash\mu_{N}blackboard_G start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT \ italic_μ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT pour N=2,3,4,6𝑁2346\displaystyle N=2,3,4,6italic_N = 2 , 3 , 4 , 6 or 88\displaystyle 88. Publ. Math. Inst. Hautes Etudes Sci., 112(1):101–141, 2010.
  4. P. Deligne and A-B. Goncharov. Groupes fondamentaux motiviques de tate mixte. Ann. Sci. École Norm. Sup., 38(1):1–56, 2005.
  5. J-I-B. Gil and J. Fresán. Multiple zeta values: From numbers to motives.
  6. C. Glanois. Motivic unipotent fundamental groupoid of 𝔾m\μN\subscript𝔾𝑚subscript𝜇𝑁\displaystyle\mathbb{G}_{m}\backslash\mu_{N}blackboard_G start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT \ italic_μ start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT for N=2,3,4,6,8𝑁23468\displaystyle N=2,3,4,6,8italic_N = 2 , 3 , 4 , 6 , 8 and galois descents. Journal of Number Theory, 160:334–384, 2016.
  7. A. B. Goncharov. Multiple polylogarithms and mixed tate motives, 2001.
  8. A-B. Goncharov. Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. Journal, 128(2):209–284, 2005.
  9. M. Kaneko K. Ihara and D. Zagier. Derivation and double shuffle relations for multiple zeta values. Compos. Math., 142:307–338, 2006.
  10. M. Kaneko and H. Tsumura. Multiple l-values of level four, poly-euler numbers, and related zeta functions. arXiv:2208.05146, 2022.
  11. K-S. Kedlaya. p𝑝\displaystyle pitalic_p-adic cohomology: from theory to practice. In p𝑝\displaystyle pitalic_p-adic geometry, Univ. Lecture Ser., 45, pages 175–203. Amer. Math. Soc., 2008.
  12. T-Q-T. Le and J. Murakami. Representations of the category of tangles by kontsennch’s itemted integral. Commun. Math. Phys., 168:535–562, 1995.
  13. Y. Ohno. A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory, 74:39–43, 1999.
  14. E. Otsuka. On arithmetic properties of periods for some rational differential forms over ℚℚ\displaystyle\mathbb{Q}blackboard_Q on the fermat curve F2subscript𝐹2\displaystyle F_{2}italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of degree 2. arXiv:2302.07650, 2023.
  15. T. Terasoma. Mixed tate motives and multiple zeta values. Invent. Math., 149(2):339–369, 1001.
  16. Alternating multiple mixed values, 2023.
  17. D. Zagier. Values of zeta functions and their applications. In First European Congress of Mathematics Paris, July 6–10, 1992: Vol. II: Invited Lectures (Part 2), pages 497–512. Springer, 1994.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: