Iterated integrals, multiple zeta values and Selberg integrals (2007.00172v4)
Abstract: Classical multiple zeta values can be viewed as iterated integrals of the differentials $\frac{dt}{t}, \frac{dt}{1-t}$ from $0$ to $1$. In this paper, we reprove Brown's theorem: For $a_i, b_i, c_{ij}\in \mathbb{Z}$, the iterated integral of the form [ \mathop{\int\cdots \int}\limits_{0<t_1<\cdots<t_N<1}\prod_i t_i{a_i}(1-t_i){b_i} \prod_{i<j}(t_j-t_i){c_{ij}}dt_1\cdots dt_N ] is a $\mathbb{Q}$-linear combination of multiple zeta values of weight $\leq N$ if convergent. What is more, we show that if $p_i(t), 1\leq i\leq N, $ are in a $\mathbb{Q}\left[t,1/t, 1/(1-t)\right]$-algebra generated by multiple polylogarithms and their dual, and if $q_{ij}(t), 1\leq i<j\leq N$, are in a $\mathbb{Q}\left[ t,1/t\right]$-algebra generated by logarithm, then the iterated integral [ \mathop{\int\cdots \int}\limits_{0<t_1<\cdots<t_N<1}\prod_i p_i(t_i)\prod_{i<j}q_{ij}(t_j-t_i)dt_1\cdots dt_N ] is a $\mathbb{Q}$-linear combination of multiple zeta values. As an application of our main results, we show that the coefficients of the Taylor expansions of the Selberg integrals [ \mathop{\int\cdots\int}{0<t_1<\cdots<t_N<1}f\prod_it_i{\alpha_i}(1-t_i){\beta_i}\prod{i<j}(t_j-t_i){\gamma_{ij}} dt_1\cdots dt_N ] (with respect to $\alpha_i,\beta_i,\gamma_{ij}$) at the integral points in some product of right half complex plane are $\mathbb{Q}$-linear combinations of multiple zeta values for any $$f\in \mathbb{Q}[t_i, t_i{-1},(t_i-t_j){-1}| 1\leq i\leq N, 1\leq i<j\leq N].$$ This statement generalizes Terasoma's original result.