Papers
Topics
Authors
Recent
Search
2000 character limit reached

Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages

Published 1 Apr 2024 in cs.CL | (2404.01009v1)

Abstract: In Indonesia, local languages play an integral role in the culture. However, the available Indonesian language resources still fall into the category of limited data in the NLP field. This is become problematic when build NLP model for these languages. To address this gap, we introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages. Our goal is to enhance access and utilization of these resources, extending their reach within the country. We explained in a detail the dataset collection process and associated challenges. Additionally, we experimented with translation task using the IBM Model 1 due to data constraints. The result showed that the performance of each language already shows good indications for further development. Challenges such as lexical variation, smoothing effects, and cross-linguistic variability are discussed. We intend to evaluate the corpus using advanced NLP techniques for low-resource languages, paving the way for multilingual translation models.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.