2000 character limit reached
Synthetic Dataset Generation and Learning From Demonstration Applied to Industrial Manipulation (2404.00447v1)
Published 30 Mar 2024 in cs.RO
Abstract: The aim of this study is to investigate an automated industrial manipulation pipeline, where assembly tasks can be flexibly adapted to production without the need for a robotic expert, both for the vision system and the robot program. The objective of this study is first, to develop a synthetic-dataset-generation pipeline with a special focus on industrial parts, and second, to use Learning-from-Demonstration (LfD) methods to replace manual robot programming, so that a non-robotic expert/process engineer can introduce a new manipulation task by teaching it to the robot.
- M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir, M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” arXiv preprint arXiv:1911.01911, 2019.
- H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances in robot learning from demonstration,” Annual review of control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.
- S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “Pvnet: Pixel-wise voting network for 6dof pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4561–4570.
- A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical movement primitives: learning attractor models for motor behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.