Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-task Magnetic Resonance Imaging Reconstruction using Meta-learning (2403.19966v2)

Published 29 Mar 2024 in eess.IV, cs.CV, and math.OC

Abstract: Using single-task deep learning methods to reconstruct Magnetic Resonance Imaging (MRI) data acquired with different imaging sequences is inherently challenging. The trained deep learning model typically lacks generalizability, and the dissimilarity among image datasets with different types of contrast leads to suboptimal learning performance. This paper proposes a meta-learning approach to efficiently learn image features from multiple MR image datasets. Our algorithm can perform multi-task learning to simultaneously reconstruct MR images acquired using different imaging sequences with different image contrasts. The experiment results demonstrate the ability of our new meta-learning reconstruction method to successfully reconstruct highly-undersampled k-space data from multiple MRI datasets simultaneously, outperforming other compelling reconstruction methods previously developed for single-task learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wanyu Bian (11 papers)
  2. Albert Jang (3 papers)
  3. Fang Liu (801 papers)
Citations (7)