Papers
Topics
Authors
Recent
2000 character limit reached

Wirtinger gradient descent methods for low-dose Poisson phase retrieval

Published 27 Mar 2024 in math.NA, cs.NA, and math.OC | (2403.18527v1)

Abstract: The problem of phase retrieval has many applications in the field of optical imaging. Motivated by imaging experiments with biological specimens, we primarily consider the setting of low-dose illumination where Poisson noise plays the dominant role. In this paper, we discuss gradient descent algorithms based on different loss functions adapted to data affected by Poisson noise, in particular in the low-dose regime. Starting from the maximum log-likelihood function for the Poisson distribution, we investigate different regularizations and approximations of the problem to design an algorithm that meets the requirements that are faced in applications. In the course of this, we focus on low-count measurements. For all suggested loss functions, we study the convergence of the respective gradient descent algorithms to stationary points and find constant step sizes that guarantee descent of the loss in each iteration. Numerical experiments in the low-dose regime are performed to corroborate the theoretical observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.