Low-light phase retrieval with implicit generative priors (2402.17745v2)
Abstract: Phase retrieval (PR) is fundamentally important in scientific imaging and is crucial for nanoscale techniques like coherent diffractive imaging (CDI). Low radiation dose imaging is essential for applications involving radiation-sensitive samples. However, most PR methods struggle in low-dose scenarios due to high shot noise. Recent advancements in optical data acquisition setups, such as in-situ CDI, have shown promise for low-dose imaging, but they rely on a time series of measurements, making them unsuitable for single-image applications. Similarly, data-driven phase retrieval techniques are not easily adaptable to data-scarce situations. Zero-shot deep learning methods based on pre-trained and implicit generative priors have been effective in various imaging tasks but have shown limited success in PR. In this work, we propose low-dose deep image prior (LoDIP), which combines in-situ CDI with the power of implicit generative priors to address single-image low-dose phase retrieval. Quantitative evaluations demonstrate LoDIP's superior performance in this task and its applicability to real experimental scenarios.
- Y. H. Lo, L. Zhao, M. Gallagher-Jones, A. Rana, J. J. Lodico, W. Xiao, B. Regan, and J. Miao, “In situ coherent diffractive imaging,” Nature communications, vol. 9, no. 1, p. 1826, 2018.
- J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature, vol. 400, no. 6742, pp. 342–344, 1999.
- J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, “Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science, vol. 348, no. 6234, pp. 530–535, 2015.
- G. N. George, I. J. Pickering, M. J. Pushie, K. Nienaber, M. J. Hackett, I. Ascone, B. Hedman, K. O. Hodgson, J. B. Aitken, A. Levina, C. Glover, and P. A. Lay, “X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples,” Journal of Synchrotron Radiation, vol. 19, no. 6, pp. 875–886, Nov 2012. [Online]. Available: https://doi.org/10.1107/S090904951203943X
- E. F. Garman and M. Weik, “X-ray radiation damage to biological macromolecules: further insights,” Journal of Synchrotron Radiation, vol. 24, no. 1, pp. 1–6, Jan 2017. [Online]. Available: https://doi.org/10.1107/S160057751602018X
- C. T. Putkunz, J. N. Clark, D. J. Vine, G. J. Williams, M. A. Pfeifer, E. Balaur, I. McNulty, K. A. Nugent, and A. G. Peele, “Phase-diverse coherent diffractive imaging: High sensitivity with low dose,” Physical review letters, vol. 106, no. 1, p. 013903, 2011.
- T.-Y. Lan, P.-N. Li, and T.-K. Lee, “Method to enhance the resolution of x-ray coherent diffraction imaging for non-crystalline bio-samples,” New Journal of Physics, vol. 16, no. 3, p. 033016, 2014.
- X. Lu, M. Pham, E. Negrini, D. Davis, S. J. Osher, and J. Miao, “Computational microscopy beyond perfect lenses,” arXiv preprint arXiv:2306.11283, 2023.
- A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Physical review letters, vol. 121, no. 24, p. 243902, 2018.
- M. Deng, S. Li, A. Goy, I. Kang, and G. Barbastathis, “Learning to synthesize: robust phase retrieval at low photon counts,” Light: Science & Applications, vol. 9, no. 1, p. 36, 2020.
- D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9446–9454.
- U. Dmitry, A. Vedaldi, and L. Victor, “Deep image prior,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1867–1888, 2020.
- F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light: Science & Applications, vol. 9, no. 1, p. 77, 2020.
- R. Heckel and P. Hand, “Deep decoder: Concise image representations from untrained non-convolutional networks,” arXiv preprint arXiv:1810.03982, 2018.
- E. Bostan, R. Heckel, M. Chen, M. Kellman, and L. Waller, “Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network,” Optica, vol. 7, no. 6, pp. 559–562, 2020.
- K. Tayal, C.-H. Lai, V. Kumar, and J. Sun, “Inverse problems, deep learning, and symmetry breaking,” arXiv preprint arXiv:2003.09077, 2020.
- Z. Zhuang, D. Yang, F. Hofmann, D. Barmherzig, and J. Sun, “Practical phase retrieval using double deep image priors,” arXiv:2211.00799, 2022.
- J. Miao, D. Sayre, and H. Chapman, “Phase retrieval from the magnitude of the fourier transforms of nonperiodic objects,” JOSA A, vol. 15, no. 6, pp. 1662–1669, 1998.
- Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: A contemporary overview,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 87–109, may 2015.
- J. R. Fienup, “Reconstruction of an object from the modulus of its fourier transform,” Optics letters, vol. 3, no. 1, pp. 27–29, 1978.
- J. Miao, J. Kirz, and D. Sayre, “The oversampling phasing method,” Acta Crystallographica Section D: Biological Crystallography, vol. 56, no. 10, pp. 1312–1315, 2000.
- H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization,” Journal of the Optical Society of America A, vol. 19, no. 7, p. 1334, jul 2002.
- D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse problems, vol. 21, no. 1, p. 37, 2004.
- J. A. Rodriguez, R. Xu, C.-C. Chen, Y. Zou, and J. Miao, “Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities,” Journal of applied crystallography, vol. 46, no. 2, pp. 312–318, 2013.
- M. Pham, P. Yin, A. Rana, S. Osher, and J. Miao, “Generalized proximal smoothing (gps) for phase retrieval,” Optics Express, vol. 27, no. 3, pp. 2792–2808, 2019.
- S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Physical Review B, vol. 68, no. 14, p. 140101, 2003.
- A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational imaging through deep learning,” Optica, vol. 4, no. 9, p. 1117, sep 2017.
- A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase retrieval using deep learning,” Physical Review Letters, vol. 121, no. 24, dec 2018.
- T. Uelwer, A. Oberstraß, and S. Harmeling, “Phase retrieval using conditional generative adversarial networks,” arXiv:1912.04981, 2019.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
- D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,” Advances in neural information processing systems, vol. 31, 2018.
- A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in International Conference on Machine Learning. PMLR, 2017, pp. 537–546.
- Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon, “A bayesian perspective on the deep image prior,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5443–5451.
- H. Wang, T. Li, Z. Zhuang, T. Chen, H. Liang, and J. Sun, “Early stopping for deep image prior,” arXiv preprint arXiv:2112.06074, 2021.
- Z. Shi, P. Mettes, S. Maji, and C. G. Snoek, “On measuring and controlling the spectral bias of the deep image prior,” International Journal of Computer Vision, vol. 130, no. 4, pp. 885–908, 2022.
- Y. Gandelsman, A. Shocher, and M. Irani, “” double-dip”: unsupervised image decomposition via coupled deep-image-priors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11 026–11 035.
- Y. Lu, Y. Lin, H. Wu, Y. Luo, X. Zheng, and L. Wang, “All one needs to know about priors for deep image restoration and enhancement: A survey,” arXiv preprint arXiv:2206.02070, 2022.
- M. Z. Darestani and R. Heckel, “Accelerated mri with un-trained neural networks,” IEEE Transactions on Computational Imaging, vol. 7, pp. 724–733, 2021.
- A. Qayyum, I. Ilahi, F. Shamshad, F. Boussaid, M. Bennamoun, and J. Qadir, “Untrained neural network priors for inverse imaging problems: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
- G. Ongie, A. Jalal, C. A. M. R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in imaging,” IEEE Journal on Selected Areas in Information Theory, 2020.
- K. Tayal, R. Manekar, Z. Zhuang, D. Yang, V. Kumar, F. Hofmann, and J. Sun, “Phase retrieval using single-instance deep generative prior,” in Applied Industrial Spectroscopy. Optica Publishing Group, 2021, pp. JW2A–37.
- R. Manekar, Z. Zhuang, K. Tayal, V. Kumar, and J. Sun, “Deep learning initialized phase retrieval,” in NeurIPS 2020 Workshop on Deep Learning and Inverse Problems, 2020.
- R. Hyder, Z. Cai, and M. S. Asif, “Solving phase retrieval with a learned reference,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16. Springer, 2020, pp. 425–441.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.
- D. A. Barmherzig, J. Sun, P.-N. Li, T. J. Lane, and E. J. Candes, “Holographic phase retrieval and reference design,” Inverse Problems, vol. 35, no. 9, p. 094001, 2019.
- I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-resolution imaging by fourier transform x-ray holography,” Science, vol. 256, no. 5059, pp. 1009–1012, 1992.
- D. J. Chang, C. M. O’Leary, C. Su, D. A. Jacobs, S. Kahn, A. Zettl, J. Ciston, P. Ercius, and J. Miao, “Deep-learning electron diffractive imaging,” Physical review letters, vol. 130, no. 1, p. 016101, 2023.
- J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics, vol. 21, no. 15, p. 2758, aug 1982.
- C. A. Metzler, P. Schniter, A. Veeraraghavan, and R. G. Baraniuk, “prdeep: Robust phase retrieval with a flexible deep network,” arXiv preprint arXiv:1803.00212, 2018.
- K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” IEEE transactions on image processing, vol. 26, no. 7, pp. 3142–3155, 2017.
- H. Lawrence, D. A. Barmherzig, M. Eickenberg, and M. Gabrie, “Low-photon holographic phase retrieval via a deep decoder neural network,” in Optical Sensors. Optica Publishing Group, 2021, pp. JTu5A–19.
- M. van Heel and M. Schatz, “Fourier shell correlation threshold criteria,” Journal of Structural Biology, vol. 151, no. 3, pp. 250–262, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1047847705001292