2000 character limit reached
The operadic theory of convexity (2403.18102v1)
Published 26 Mar 2024 in math.CT, cs.IT, math.IT, and quant-ph
Abstract: In this article, we characterize convexity in terms of algebras over a PROP, and establish a tensor-product-like symmetric monoidal structure on the category of convex sets. Using these two structures, and the theory of $\scr{O}$-monoidal categories, we state and prove a Grothendieck construction for lax $\scr{O}$-monoidal functors into convex sets. We apply this construction to the categorical characterization of entropy of Baez, Fritz, and Leinster, and to the study of quantum contextuality in the framework of simplicial distributions.
- “Coequalizers in categories of algebras” In Seminar on Triples and Categorical Homology Theory: ETH 1966/67, 1969, pp. 75–90 Springer
- John C. Baez and Alissa S. Crans “Higher-dimensional algebra. VI: Lie 2-algebras.” In Theory and Applications of Categories 12, 2004, pp. 492–538
- John C. Baez, Tobias Fritz and Tom Leinster “A Characterization of Entropy in Terms of Information Loss” In Entropy 13.11, 2011, pp. 1945–1957 DOI: 10.3390/e13111945
- Tobias Fritz “A presentation of the category of stochastic matrices”, 2009 arXiv:0902.2554 [math.CT]
- Tobias Fritz “Convex Spaces I: Definition and Examples”, 2015 arXiv:0903.5522 [math.MG]
- “On the category of props” In Applied Categorical Structures 23 Springer, 2015, pp. 543–573
- “Infinity properads and infinity wheeled properads” Springer, 2015
- Redi Haderi and Walker H. Stern “An 𝒪𝒪\mathcal{O}caligraphic_O-monoidal Grothendieck Construction” In in preparation
- Bart Jacobs “Duality for Convexity”, 2009 arXiv:0911.3834 [math.LO]
- “Simplicial distributions, convex categories and contextuality”, 2022 arXiv:2211.00571 [math.CT]
- Tom Leinster “An Operadic Introduction to Entropy” In The n-Category Cafe, 2011 URL: https://golem.ph.utexas.edu/category/2011/05/an_operadic_introduction_to_en.html
- Tom Leinster “Entropy and Diversity: The Axiomatic Approach” Cambridge University Press, 2021
- Tom Leinster “Higher operads, higher categories” Cambridge University Press, 2004
- J.P. May “Simplicial objects in algebraic topology”, Van Nostrand Mathematical Studies, No. 11 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967, pp. vi+161
- “Monoidal Grothendieck Construction” In Theory and Applications of Categories 35, 2020, pp. 1159–1207 URL: http://eudml.org/doc/124264
- Walter D. Neumann “On the quasivariety of convex subsets of affine spaces” In Archiv der Mathematik 21.1, 1970, pp. 11–16 DOI: 10.1007/BF01220869
- Cihan Okay, Aziz Kharoof and Selman Ipek “Simplicial quantum contextuality” In Quantum 7, 2023, pp. 1009
- Cihan Okay and Walker H. Stern “Twisted simplicial distributions” In in preparation
- T. Świriszcz “Monadic functors and convexity” In Bulletin de l’Académie Polonaise des Sciences XXII.1, 1974, pp. 39–42