Direct demonstration of bulk-boundary correspondence in higher-order topological superconductors with chiral symmetry
Abstract: A higher-order topological superconductor can experience topological phase transitions driven by variations in a bulk parameter without closing the bulk gap. This presents a challenge in establishing a direct bulk-boundary correspondence, as conventional bulk invariants change only upon the closure of the bulk gap. Our study of two-dimensional higher-order phases in the DIII and BDI symmetry classes, both characterized by chiral symmetry, demonstrates that zero-energy crossings facilitate a direct connection between the bulk Hamiltonian and Majorana zero modes at corners. These crossings, emerging as boundary conditions vary, can be identified from the bulk Hamiltonian. For both classes, we introduce a pair of topological invariants derived from these zero-energy crossings to characterize the higher-order topology. Phases in which at least one invariant assumes a nonzero value are anticipated to host Majorana corner modes. Moreover, these invariants may change with the closure of either bulk or edge gaps, thereby providing a clear and direct demonstration of bulk-boundary correspondence in higher-order phases. Our findings offer a promising framework for systematically exploring higher-order topology through boundary condition modulation.
- X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).
- N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61, 10267 (2000).
- A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).
- F. Wilczek, Majorana returns, Nature Phys 5, 614 (2009).
- J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012).
- C. Beenakker, Search for Majorana Fermions in Superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
- R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cimento 40, 523 (2017).
- W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science 357, 61 (2017a).
- Z. Song, Z. Fang, and C. Fang, ( d - 2 ) -Dimensional Edge States of Rotation Symmetry Protected Topological States, Phys. Rev. Lett. 119, 246402 (2017).
- W. A. Benalcazar and A. Cerjan, Chiral-Symmetric Higher-Order Topological Phases of Matter, Phys. Rev. Lett. 128, 127601 (2022).
- E. Khalaf, Higher-order topological insulators and superconductors protected by inversion symmetry, Phys. Rev. B 97, 205136 (2018).
- X. Zhu, Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields, Phys. Rev. B 97, 205134 (2018).
- Z. Yan, F. Song, and Z. Wang, Majorana Corner Modes in a High-Temperature Platform, Phys. Rev. Lett. 121, 096803 (2018).
- Y. Wang, M. Lin, and T. L. Hughes, Weak-pairing higher order topological superconductors, Phys. Rev. B 98, 165144 (2018b).
- Z. Yan, Higher-Order Topological Odd-Parity Superconductors, Phys. Rev. Lett. 123, 177001 (2019).
- R.-X. Zhang, W. S. Cole, and S. Das Sarma, Helical Hinge Majorana Modes in Iron-Based Superconductors, Phys. Rev. Lett. 122, 187001 (2019a).
- A. K. Ghosh, T. Nag, and A. Saha, Hierarchy of higher-order topological superconductors in three dimensions, Phys. Rev. B 104, 134508 (2021).
- L. Trifunovic and P. W. Brouwer, Higher-Order Bulk-Boundary Correspondence for Topological Crystalline Phases, Phys. Rev. X 9, 011012 (2019).
- A. Skurativska, T. Neupert, and M. H. Fischer, Atomic limit and inversion-symmetry indicators for topological superconductors, Phys. Rev. Research 2, 013064 (2020).
- S. Ono, H. C. Po, and H. Watanabe, Refined symmetry indicators for topological superconductors in all space groups, Sci. Adv. 6, eaaz8367 (2020).
- R. Takahashi, Y. Tanaka, and S. Murakami, Bulk-edge and bulk-hinge correspondence in inversion-symmetric insulators, Phys. Rev. Research 2, 013300 (2020).
- R.-X. Zhang, Bulk-Vortex Correspondence of Higher-Order Topological Superconductors (2022), arxiv:2208.01652 .
- E. Roberts, J. Behrends, and B. Béri, Second-order bulk-boundary correspondence in rotationally symmetric topological superconductors from stacked Dirac Hamiltonians, Phys. Rev. B 101, 155133 (2020).
- S.-J. Huang and Y.-T. Hsu, Faithful derivation of symmetry indicators: A case study for topological superconductors with time-reversal and inversion symmetries, Phys. Rev. Research 3, 013243 (2021).
- X. Zhu, Second-Order Topological Superconductors with Mixed Pairing, Phys. Rev. Lett. 122, 236401 (2019).
- A. Tiwari, A. Jahin, and Y. Wang, Chiral Dirac superconductors: Second-order and boundary-obstructed topology, Phys. Rev. Research 2, 043300 (2020).
- Y. Volpez, D. Loss, and J. Klinovaja, Second-Order Topological Superconductivity in π𝜋\piitalic_π -Junction Rashba Layers, Phys. Rev. Lett. 122, 126402 (2019).
- H. Wang and X. Zhu, Higher-order topological superconductors characterized by Fermi level crossings, Phys. Rev. B 108, 125426 (2023).
- Y. Tanaka, R. Takahashi, and S. Murakami, Appearance of hinge states in second-order topological insulators via the cutting procedure, Phys. Rev. B 101, 115120 (2020).
- A. P. Schnyder and S. Ryu, Topological phases and surface flat bands in superconductors without inversion symmetry, Phys. Rev. B 84, 060504(R) (2011).
- X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological invariants for the Fermi surface of a time-reversal-invariant superconductor, Phys. Rev. B 81, 134508 (2010).
- J.-W. Rhim, J. H. Bardarson, and R.-J. Slager, Unified bulk-boundary correspondence for band insulators, Phys. Rev. B 97, 115143 (2018).
- M. Wimmer, Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices, ACM Trans. Math. Softw. 38, 1 (2012).
- Q. Niu, D. J. Thouless, and Y.-S. Wu, Quantized Hall conductance as a topological invariant, Phys. Rev. B 31, 3372 (1985).
- X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Phys. Rev. B 74, 045125 (2006).
- Z.-D. Song, L. Elcoro, and B. A. Bernevig, Twisted bulk-boundary correspondence of fragile topology, Science 367, 794 (2020).
- A. Jahin, Y.-M. Lu, and Y. Wang, Many-body higher-order topological invariant for $C_n$-symmetric insulators (2024), arxiv:2401.00050 .
- L. Lin and C. Lee, Probing Chiral-Symmetric Higher-Order Topological Insulators with Multipole Winding Number (2024), arxiv:2401.03699 .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.