Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse inference in Poisson Log-Normal model by approximating the L0-norm (2403.17087v1)

Published 25 Mar 2024 in stat.ME

Abstract: Variable selection methods are required in practical statistical modeling, to identify and include only the most relevant predictors, and then improving model interpretability. Such variable selection methods are typically employed in regression models, for instance in this article for the Poisson Log Normal model (PLN, Chiquet et al., 2021). This model aim to explain multivariate count data using dependent variables, and its utility was demonstrating in scientific fields such as ecology and agronomy. In the case of the PLN model, most papers focus on sparse networks inference through combination of the likelihood with a L1 -penalty on the precision matrix. In this paper, we propose to rely on a recent penalization method (SIC, O'Neill and Burke, 2023), which consists in smoothly approximating the L0-penalty, and that avoids the calibration of a tuning parameter with a cross-validation procedure. Moreover, this work focuses on the coefficient matrix of the PLN model and establishes an inference procedure ensuring effective variable selection performance, so that the resulting fitted model explaining multivariate count data using only relevant explanatory variables. Our proposal involves implementing a procedure that integrates the SIC penalization algorithm (epsilon-telescoping) and the PLN model fitting algorithm (a variational EM algorithm). To support our proposal, we provide theoretical results and insights about the penalization method, and we perform simulation studies to assess the method, which is also applied on real datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube