Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Superconformal Symmetry and Index Theory (2403.16716v2)

Published 25 Mar 2024 in hep-th

Abstract: Formulation and supersymmetry localization of superconformal indices for $\mathcal{N}=2B$ superconformal quantum mechanics are reviewed by providing a generalization to fixed point submanifolds of resolved target space geometries, and future applications to gauged scaling quivers are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.
  2. A. Sen, “Entropy Function and AdS(2) / CFT(1) Correspondence,” JHEP 11 (2008) 075, arXiv:0805.0095 [hep-th].
  3. N. Dorey and A. Singleton, “An Index for Superconformal Quantum Mechanics,” arXiv:1812.11816 [hep-th].
  4. A. E. Barns-Graham and N. Dorey, “A Superconformal Index for HyperKähler Cones,” arXiv:1812.04565 [hep-th].
  5. J. Raeymaekers, C. Sanli, and D. Van den Bleeken, “Superconformal indices and localization in N=2⁢B𝑁2𝐵N=2Bitalic_N = 2 italic_B quantum mechanics,” arXiv:2403.07665 [hep-th].
  6. J. Michelson and A. Strominger, “The Geometry of (super)conformal quantum mechanics,” Commun. Math. Phys. 213 (2000) 1–17, arXiv:hep-th/9907191.
  7. G. W. Gibbons and P. Rychenkova, “Cones, triSasakian structures and superconformal invariance,” Phys. Lett. B 443 (1998) 138–142, arXiv:hep-th/9809158.
  8. S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal Mechanics,” J. Phys. A 45 (2012) 173001, arXiv:1112.1947 [hep-th].
  9. R. Britto-Pacumio, A. Strominger, and A. Volovich, “Two black hole bound states,” JHEP 03 (2001) 050, arXiv:hep-th/0004017.
  10. V. de Alfaro, S. Fubini, and G. Furlan, “Conformal Invariance in Quantum Mechanics,” Nuovo Cim. A 34 (1976) 569.
  11. S. Fubini and E. Rabinovici, “Superconformal Quantum Mechanics,” Nucl. Phys. B 245 (1984) 17.
  12. E. Witten, “Constraints on Supersymmetry Breaking,” Nucl. Phys. B 202 (1982) 253.
  13. N. Dorey and B. Zhao, “Superconformal quantum mechanics and growth of sheaf cohomology,” JHEP 08 (2023) 096, arXiv:2209.11834 [hep-th].
  14. O. Aharony, M. Berkooz, and N. Seiberg, “Light cone description of (2,0) superconformal theories in six-dimensions,” Adv. Theor. Math. Phys. 2 (1998) 119–153, arXiv:hep-th/9712117.
  15. D. Martelli, J. Sparks, and S.-T. Yau, “Sasaki-Einstein manifolds and volume minimisation,” Commun. Math. Phys. 280 (2008) 611–673, arXiv:hep-th/0603021.
  16. N. Dorey and D. Zhang, “Superconformal quantum mechanics on Kähler cones,” JHEP 05 (2020) 115, arXiv:1911.06787 [hep-th].
  17. F. Denef, “Supergravity flows and D-brane stability,” JHEP 08 (2000) 050, arXiv:hep-th/0005049.
  18. A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Exact and asymptotic degeneracies of small black holes,” JHEP 08 (2005) 021, arXiv:hep-th/0502157.
  19. F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,” JHEP 11 (2011) 129, arXiv:hep-th/0702146.
  20. F. Denef, “Quantum quivers and Hall / hole halos,” JHEP 10 (2002) 023, arXiv:hep-th/0206072.
  21. J. de Boer, F. Denef, S. El-Showk, I. Messamah, and D. Van den Bleeken, “Black hole bound states in AdS(3) x S**2,” JHEP 11 (2008) 050, arXiv:0802.2257 [hep-th].
  22. I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, “Scaling BPS Solutions and pure-Higgs States,” JHEP 11 (2012) 171, arXiv:1205.5023 [hep-th].
  23. A. V. Smilga, “Perturbative Corrections to Effective Zero Mode Hamiltonian in Supersymmetric QED,” Nucl. Phys. B 291 (1987) 241–255.
  24. D. Mirfendereski, J. Raeymaekers, and D. Van den Bleeken, “Superconformal mechanics of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT D-brane boundstates,” JHEP 12 (2020) 176, arXiv:2009.07107 [hep-th].
  25. F. Delduc and E. Ivanov, “Gauging N=4 Supersymmetric Mechanics,” Nucl. Phys. B 753 (2006) 211–241, arXiv:hep-th/0605211.
  26. F. Delduc and E. Ivanov, “Gauging N=4 supersymmetric mechanics II: (1,4,3) models from the (4,4,0) ones,” Nucl. Phys. B 770 (2007) 179–205, arXiv:hep-th/0611247.
  27. S. Bellucci, S. Krivonos, A. Marrani, and E. Orazi, “’Root’ action for N=4 supersymmetric mechanics theories,” Phys. Rev. D 73 (2006) 025011, arXiv:hep-th/0511249.
  28. D. Mirfendereski, J. Raeymaekers, C. Şanlı, and D. Van den Bleeken, “The geometry of gauged (super)conformal mechanics,” JHEP 08 (2022) 081, arXiv:2203.10167 [hep-th].
  29. D. Anninos, T. Anous, P. de Lange, and G. Konstantinidis, “Conformal quivers and melting molecules,” JHEP 03 (2015) 066, arXiv:1310.7929 [hep-th].
  30. G. Papadopoulos, “Conformal and superconformal mechanics,” Class. Quant. Grav. 17 (2000) 3715–3742, arXiv:hep-th/0002007.
  31. D. Gaiotto, A. Simons, A. Strominger, and X. Yin, “D0-branes in black hole attractors,” JHEP 03 (2006) 019, arXiv:hep-th/0412179.
  32. R. A. Coles and G. Papadopoulos, “The Geometry of the one-dimensional supersymmetric nonlinear sigma models,” Class. Quant. Grav. 7 (1990) 427–438.
  33. M. W. Goodman, “Proof of Character Valued Index Theorems,” Commun. Math. Phys. 107 (1986) 391.
  34. L. Alvarez-Gaume, “Supersymmetry and the Atiyah-Singer Index Theorem,” Commun. Math. Phys. 90 (1983) 161.
  35. A. J. Niemi and O. Tirkkonen, “Cohomological partition functions for a class of bosonic theories,” Phys. Lett. B 293 (1992) 339–343, arXiv:hep-th/9206033.
  36. A. J. Niemi and O. Tirkkonen, “On exact evaluation of path integrals,” Annals Phys. 235 (1994) 318–349, arXiv:hep-th/9301059.
  37. E. A. Ivanov and A. V. Smilga, “Dirac Operator on Complex Manifolds and Supersymmetric Quantum Mechanics,” Int. J. Mod. Phys. A 27 (2012) 1230024, arXiv:1012.2069 [hep-th].
  38. A. V. Smilga, “Supersymmetric proof of the Hirzebruch-Riemann-Roch theorem for non-Kahler manifolds,” SIGMA 8 (2012) 003, arXiv:1109.2867 [math-ph].
  39. M. F. Atiyah and I. M. Singer, “The Index of elliptic operators. 1-3,” Annals Math. 87 (1968) 484–604.
  40. M. F. Atiyah and I. M. Singer, “The Index of elliptic operators. 4-5.,” Annals Math. 93 (1971) 119–149.
  41. L. Alvarez-Gaume, “Supersymmetry and Index Theory,” in 1984 NATO ASI on Supersymmetry. 1986.
  42. D. Friedan and P. Windey, “Supersymmetric Derivation of the Atiyah-Singer Index and the Chiral Anomaly,” Nucl. Phys. B 235 (1984) 395–416.
  43. C. Sanli, “Index for Gauged Superconformal Mechanics,” In Preparation .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube