2000 character limit reached
Superconformal Symmetry and Index Theory (2403.16716v2)
Published 25 Mar 2024 in hep-th
Abstract: Formulation and supersymmetry localization of superconformal indices for $\mathcal{N}=2B$ superconformal quantum mechanics are reviewed by providing a generalization to fixed point submanifolds of resolved target space geometries, and future applications to gauged scaling quivers are discussed.
- A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.
- A. Sen, “Entropy Function and AdS(2) / CFT(1) Correspondence,” JHEP 11 (2008) 075, arXiv:0805.0095 [hep-th].
- N. Dorey and A. Singleton, “An Index for Superconformal Quantum Mechanics,” arXiv:1812.11816 [hep-th].
- A. E. Barns-Graham and N. Dorey, “A Superconformal Index for HyperKähler Cones,” arXiv:1812.04565 [hep-th].
- J. Raeymaekers, C. Sanli, and D. Van den Bleeken, “Superconformal indices and localization in N=2B𝑁2𝐵N=2Bitalic_N = 2 italic_B quantum mechanics,” arXiv:2403.07665 [hep-th].
- J. Michelson and A. Strominger, “The Geometry of (super)conformal quantum mechanics,” Commun. Math. Phys. 213 (2000) 1–17, arXiv:hep-th/9907191.
- G. W. Gibbons and P. Rychenkova, “Cones, triSasakian structures and superconformal invariance,” Phys. Lett. B 443 (1998) 138–142, arXiv:hep-th/9809158.
- S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal Mechanics,” J. Phys. A 45 (2012) 173001, arXiv:1112.1947 [hep-th].
- R. Britto-Pacumio, A. Strominger, and A. Volovich, “Two black hole bound states,” JHEP 03 (2001) 050, arXiv:hep-th/0004017.
- V. de Alfaro, S. Fubini, and G. Furlan, “Conformal Invariance in Quantum Mechanics,” Nuovo Cim. A 34 (1976) 569.
- S. Fubini and E. Rabinovici, “Superconformal Quantum Mechanics,” Nucl. Phys. B 245 (1984) 17.
- E. Witten, “Constraints on Supersymmetry Breaking,” Nucl. Phys. B 202 (1982) 253.
- N. Dorey and B. Zhao, “Superconformal quantum mechanics and growth of sheaf cohomology,” JHEP 08 (2023) 096, arXiv:2209.11834 [hep-th].
- O. Aharony, M. Berkooz, and N. Seiberg, “Light cone description of (2,0) superconformal theories in six-dimensions,” Adv. Theor. Math. Phys. 2 (1998) 119–153, arXiv:hep-th/9712117.
- D. Martelli, J. Sparks, and S.-T. Yau, “Sasaki-Einstein manifolds and volume minimisation,” Commun. Math. Phys. 280 (2008) 611–673, arXiv:hep-th/0603021.
- N. Dorey and D. Zhang, “Superconformal quantum mechanics on Kähler cones,” JHEP 05 (2020) 115, arXiv:1911.06787 [hep-th].
- F. Denef, “Supergravity flows and D-brane stability,” JHEP 08 (2000) 050, arXiv:hep-th/0005049.
- A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Exact and asymptotic degeneracies of small black holes,” JHEP 08 (2005) 021, arXiv:hep-th/0502157.
- F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,” JHEP 11 (2011) 129, arXiv:hep-th/0702146.
- F. Denef, “Quantum quivers and Hall / hole halos,” JHEP 10 (2002) 023, arXiv:hep-th/0206072.
- J. de Boer, F. Denef, S. El-Showk, I. Messamah, and D. Van den Bleeken, “Black hole bound states in AdS(3) x S**2,” JHEP 11 (2008) 050, arXiv:0802.2257 [hep-th].
- I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, “Scaling BPS Solutions and pure-Higgs States,” JHEP 11 (2012) 171, arXiv:1205.5023 [hep-th].
- A. V. Smilga, “Perturbative Corrections to Effective Zero Mode Hamiltonian in Supersymmetric QED,” Nucl. Phys. B 291 (1987) 241–255.
- D. Mirfendereski, J. Raeymaekers, and D. Van den Bleeken, “Superconformal mechanics of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT D-brane boundstates,” JHEP 12 (2020) 176, arXiv:2009.07107 [hep-th].
- F. Delduc and E. Ivanov, “Gauging N=4 Supersymmetric Mechanics,” Nucl. Phys. B 753 (2006) 211–241, arXiv:hep-th/0605211.
- F. Delduc and E. Ivanov, “Gauging N=4 supersymmetric mechanics II: (1,4,3) models from the (4,4,0) ones,” Nucl. Phys. B 770 (2007) 179–205, arXiv:hep-th/0611247.
- S. Bellucci, S. Krivonos, A. Marrani, and E. Orazi, “’Root’ action for N=4 supersymmetric mechanics theories,” Phys. Rev. D 73 (2006) 025011, arXiv:hep-th/0511249.
- D. Mirfendereski, J. Raeymaekers, C. Şanlı, and D. Van den Bleeken, “The geometry of gauged (super)conformal mechanics,” JHEP 08 (2022) 081, arXiv:2203.10167 [hep-th].
- D. Anninos, T. Anous, P. de Lange, and G. Konstantinidis, “Conformal quivers and melting molecules,” JHEP 03 (2015) 066, arXiv:1310.7929 [hep-th].
- G. Papadopoulos, “Conformal and superconformal mechanics,” Class. Quant. Grav. 17 (2000) 3715–3742, arXiv:hep-th/0002007.
- D. Gaiotto, A. Simons, A. Strominger, and X. Yin, “D0-branes in black hole attractors,” JHEP 03 (2006) 019, arXiv:hep-th/0412179.
- R. A. Coles and G. Papadopoulos, “The Geometry of the one-dimensional supersymmetric nonlinear sigma models,” Class. Quant. Grav. 7 (1990) 427–438.
- M. W. Goodman, “Proof of Character Valued Index Theorems,” Commun. Math. Phys. 107 (1986) 391.
- L. Alvarez-Gaume, “Supersymmetry and the Atiyah-Singer Index Theorem,” Commun. Math. Phys. 90 (1983) 161.
- A. J. Niemi and O. Tirkkonen, “Cohomological partition functions for a class of bosonic theories,” Phys. Lett. B 293 (1992) 339–343, arXiv:hep-th/9206033.
- A. J. Niemi and O. Tirkkonen, “On exact evaluation of path integrals,” Annals Phys. 235 (1994) 318–349, arXiv:hep-th/9301059.
- E. A. Ivanov and A. V. Smilga, “Dirac Operator on Complex Manifolds and Supersymmetric Quantum Mechanics,” Int. J. Mod. Phys. A 27 (2012) 1230024, arXiv:1012.2069 [hep-th].
- A. V. Smilga, “Supersymmetric proof of the Hirzebruch-Riemann-Roch theorem for non-Kahler manifolds,” SIGMA 8 (2012) 003, arXiv:1109.2867 [math-ph].
- M. F. Atiyah and I. M. Singer, “The Index of elliptic operators. 1-3,” Annals Math. 87 (1968) 484–604.
- M. F. Atiyah and I. M. Singer, “The Index of elliptic operators. 4-5.,” Annals Math. 93 (1971) 119–149.
- L. Alvarez-Gaume, “Supersymmetry and Index Theory,” in 1984 NATO ASI on Supersymmetry. 1986.
- D. Friedan and P. Windey, “Supersymmetric Derivation of the Atiyah-Singer Index and the Chiral Anomaly,” Nucl. Phys. B 235 (1984) 395–416.
- C. Sanli, “Index for Gauged Superconformal Mechanics,” In Preparation .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.