CT-Bound: Robust Boundary Detection From Noisy Images Via Hybrid Convolution and Transformer Neural Networks (2403.16494v2)
Abstract: We present CT-Bound, a robust and fast boundary detection method for very noisy images using a hybrid Convolution and Transformer neural network. The proposed architecture decomposes boundary estimation into two tasks: local detection and global regularization. During the local detection, the model uses a convolutional architecture to predict the boundary structure of each image patch in the form of a pre-defined local boundary representation, the field-of-junctions (FoJ). Then, it uses a feed-forward transformer architecture to globally refine the boundary structures of each patch to generate an edge map and a smoothed color map simultaneously. Our quantitative analysis shows that CT-Bound outperforms the previous best algorithms in edge detection on very noisy images. It also increases the edge detection accuracy of FoJ-based methods while having a 3-time speed improvement. Finally, we demonstrate that CT-Bound can produce boundary and color maps on real captured images without extra fine-tuning and real-time boundary map and color map videos at ten frames per second.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.