Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time-series Initialization and Conditioning for Video-agnostic Stabilization of Video Super-Resolution using Recurrent Networks (2403.15832v1)

Published 23 Mar 2024 in cs.CV

Abstract: A Recurrent Neural Network (RNN) for Video Super Resolution (VSR) is generally trained with randomly clipped and cropped short videos extracted from original training videos due to various challenges in learning RNNs. However, since this RNN is optimized to super-resolve short videos, VSR of long videos is degraded due to the domain gap. Our preliminary experiments reveal that such degradation changes depending on the video properties, such as the video length and dynamics. To avoid this degradation, this paper proposes the training strategy of RNN for VSR that can work efficiently and stably independently of the video length and dynamics. The proposed training strategy stabilizes VSR by training a VSR network with various RNN hidden states changed depending on the video properties. Since computing such a variety of hidden states is time-consuming, this computational cost is reduced by reusing the hidden states for efficient training. In addition, training stability is further improved with frame-number conditioning. Our experimental results demonstrate that the proposed method performed better than base methods in videos with various lengths and dynamics.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com