Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General LLMs as Instructors for Domain-Specific LLMs: A Sequential Fusion Method to Integrate Extraction and Editing (2403.15736v2)

Published 23 Mar 2024 in cs.CL

Abstract: The substantial interest in updating LLMs without retraining from scratch is accompanied by several challenges. This is particularly true when updating LLMs with datasets that necessitate domain-expert reasoning across extensive texts, despite limited samples. We termed the scenario as the Few-Shot Domain-Expert Reasoning for Updating LLMs (FDoR-UL). Traditional methods such as Low-Rank Adaptation (LoRA) and Retrieval Augmented Generation (RAG) are inadequate for addressing this critical issue, particularly evident in our exploration of a specific medical dataset that epitomizes the distinct needs of FDoR-UL. To tackle this challenge, we introduce a Sequential Fusion method to integrate knowledge from complex contexts into LLMs. This method employs a two-stage framework: initially leveraging general LLMs to perform relation extraction for knowledge acquisition from complex texts, followed by updating domain-specific LLMs through Knowledge Editing (KE). Employing our method, domain-specific LLMs achieved a 71.7% accuracy (an average gain of 39.1%) in question-answering tasks. Furthermore, we expanded our evaluation to a novel economics-management dataset we developed, where our method achieved a 75.0% accuracy (an average gain of 45.0%). These findings underscore the effectiveness and flexibility of our approach in FDoR-UL across various domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xin Zhang (904 papers)
  2. Tianjie Ju (16 papers)
  3. Huijia Liang (1 paper)
  4. Ying Fu (98 papers)
  5. Qin Zhang (98 papers)

Summary

We haven't generated a summary for this paper yet.