Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Integration in Multiple Dimensions with Designed Quadrature (1804.06501v1)

Published 17 Apr 2018 in cs.NA and math.NA

Abstract: We present a systematic computational framework for generating positive quadrature rules in multiple dimensions on general geometries. A direct moment-matching formulation that enforces exact integration on polynomial subspaces yields nonlinear conditions and geometric constraints on nodes and weights. We use penalty methods to address the geometric constraints, and subsequently solve a quadratic minimization problem via the Gauss-Newton method. Our analysis provides guidance on requisite sizes of quadrature rules for a given polynomial subspace, and furnishes useful user-end stability bounds on error in the quadrature rule in the case when the polynomial moment conditions are violated by a small amount due to, e.g., finite precision limitations or stagnation of the optimization procedure. We present several numerical examples investigating optimal low-degree quadrature rules, Lebesgue constants, and 100-dimensional quadrature. Our capstone examples compare our quadrature approach to popular alternatives, such as sparse grids and quasi-Monte Carlo methods, for problems in linear elasticity and topology optimization.

Citations (50)

Summary

We haven't generated a summary for this paper yet.