Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design Patterns for Situated Visualization in Augmented Reality (2307.09157v2)

Published 18 Jul 2023 in cs.HC

Abstract: Situated visualization has become an increasingly popular research area in the visualization community, fueled by advancements in augmented reality (AR) technology and immersive analytics. Visualizing data in spatial proximity to their physical referents affords new design opportunities and considerations not present in traditional visualization, which researchers are now beginning to explore. However, the AR research community has an extensive history of designing graphics that are displayed in highly physical contexts. In this work, we leverage the richness of AR research and apply it to situated visualization. We derive design patterns which summarize common approaches of visualizing data in situ. The design patterns are based on a survey of 293 papers published in the AR and visualization communities, as well as our own expertise. We discuss design dimensions that help to describe both our patterns and previous work in the literature. This discussion is accompanied by several guidelines which explain how to apply the patterns given the constraints imposed by the real world. We conclude by discussing future research directions that will help establish a complete understanding of the design of situated visualization, including the role of interactivity, tasks, and workflows.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (124)
  1. Comparing Spatial and Mobile Augmented Reality for Guiding Assembling Procedures with Task Validation. In Proc. ICARSC, pp. 1–6. IEEE, Apr. 2019. doi: 10 . 1109/ICARSC . 2019 . 8733642
  2. Low-Level Components of Analytic Activity in Information Visualization. In Proc. INFOVIS, pp. 15–15. IEEE, 2005. doi: 10 . 1109/INFOVIS . 2005 . 24
  3. YouMove: Enhancing movement training with an augmented reality mirror. In Proc. UIST, pp. 311–320. ACM, Oct. 2013. doi: 10 . 1145/2501988 . 2502045
  4. Exploring Augmented Reality Waste Data Representations for Eco Feedback. In Proc. CHI EA, pp. 1–4. ACM, Apr. 2023. doi: 10 . 1145/3544549 . 3583905
  5. Drawing into the AR-CANVAS: Designing embedded visualizations for augmented reality. In IEEE VIS Workshop on Immersive Analytics, 2017.
  6. Design Patterns for Data Comics. In Proc. CHI, pp. 1–12. ACM, Apr. 2018. doi: 10 . 1145/3173574 . 3173612
  7. I. Barakonyi and D. Schmalstieg. Augmented Reality Agents in the Development Pipeline of Computer Entertainment. In F. Kishino, Y. Kitamura, H. Kato, and N. Nagata, eds., Proc. ICEC, pp. 345–356. Springer, 2005. doi: 10 . 1007/11558651_34
  8. The Virtual Mirror: A New Interaction Paradigm for Augmented Reality Environments. IEEE Trans. Med. Imaging, 28(9):1498–1510, Sept. 2009. doi: 10 . 1109/TMI . 2009 . 2018622
  9. Toolglass and magic lenses: The see-through interface. In Proc. ACM Comput. Graphics Comput. Syst., pp. 73–80, 1993. doi: 10 . 1145/166117 . 166126
  10. In-Situ Instructions Exceed Side-by-Side Instructions in Augmented Reality Assisted Assembly. In Proc. PETRA, pp. 133–140. ACM, June 2018. doi: 10 . 1145/3197768 . 3197778
  11. The Benefits of an Augmented Reality Magic Mirror System for Integrated Radiology Teaching in Gross Anatomy. Anat. Sci. Educ., 12(6):585–598, Nov. 2019. doi: 10 . 1002/ase . 1864
  12. Information-rich virtual environments: Theory, tools, and research agenda. In Proc. VRST, pp. 81–90. ACM, Oct. 2003. doi: 10 . 1145/1008653 . 1008669
  13. What’s the Situation with Situated Visualization? A Survey and Perspectives on Situatedness. IEEE TVCG, 28(1):107–117, Jan. 2022. doi: 10 . 1109/TVCG . 2021 . 3114835
  14. MIRIA: A Mixed Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal Interaction Data. In Proc. CHI, pp. 1–15. ACM, May 2021. doi: 10 . 1145/3411764 . 3445651
  15. Augmented Reality Training for Industrial Assembly Work - Are Projection-based AR Assistive Systems an Appropriate Tool for Assembly Training? In Proc. CHI, pp. 1–12. ACM, Apr. 2020. doi: 10 . 1145/3313831 . 3376720
  16. GhostAR: A Time-space Editor for Embodied Authoring of Human-Robot Collaborative Task with Augmented Reality. In Proc. UIST, pp. 521–534. ACM, Oct. 2019. doi: 10 . 1145/3332165 . 3347902
  17. Readings in Information Visualization: Using Vision to Think. The Morgan Kaufmann Series in Interactive Technologies. Morgan Kaufmann Publishers, 1999.
  18. Intuitive intraoperative ultrasound guidance using the Sonic Flashlight: A novel ultrasound display system. Neurosurgery, 56(2 Suppl):434–437; discussion 434–437, Apr. 2005. doi: 10 . 1227/01 . neu . 0000156551 . 66538 . 6a
  19. Improved Telemanipulator Navigation During Display-Control Misalignments Using Augmented Reality Cues. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, 40(1):29–39, Jan. 2010. doi: 10 . 1109/TSMCA . 2009 . 2030166
  20. ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation. In Proc. UIST, pp. 71–83. ACM, Oct. 2017. doi: 10 . 1145/3126594 . 3126613
  21. An augmented reality application for improving shopping experience in large retail stores. Virtual Reality, 23(3):281–291, Sept. 2019. doi: 10 . 1007/s10055-018-0338-3
  22. A Design Space Exploration of Worlds in Miniature. In Proc. CHI, pp. 1–15. ACM, May 2021. doi: 10 . 1145/3411764 . 3445098
  23. A Visual Interaction Cue Framework from Video Game Environments for Augmented Reality. In Proc. CHI, pp. 1–12. ACM, Apr. 2018. doi: 10 . 1145/3173574 . 3173714
  24. Situated Analytics. In Proc. BDVA, pp. 1–8. IEEE, Sept. 2015. doi: 10 . 1109/BDVA . 2015 . 7314302
  25. Grand Challenges in Immersive Analytics. In Proc. CHI, pp. 1–17. ACM, May 2021. doi: 10 . 1145/3411764 . 3446866
  26. Uplift: A Tangible and Immersive Tabletop System for Casual Collaborative Visual Analytics. IEEE TVCG, 27(2):1193–1203, Feb. 2021. doi: 10 . 1109/TVCG . 2020 . 3030334
  27. Ethereal planes: A design framework for 2D information space in 3D mixed reality environments. In Proc. SUI, pp. 2–12. ACM, Oct. 2014. doi: 10 . 1145/2659766 . 2659769
  28. A review of visual perception research in optical see-through augmented reality. In F. Argelaguet, R. McMahan, and M. Sugimoto, eds., Proc. EGVE. Eurographics Association, 2020. doi: 10 . 2312/egve . 20201256
  29. AUIT – the Adaptive User Interfaces Toolkit for Designing XR Applications. In Proc. UIST, pp. 1–16. ACM, Oct. 2022. doi: 10 . 1145/3526113 . 3545651
  30. Cutaways and ghosting: Satisfying visibility constraints in dynamic 3D illustrations. The Visual Computer, 8(5):292–302, Sept. 1992. doi: 10 . 1007/BF01897116
  31. "What’s Happening at that Hip?": Evaluating an On-body Projection based Augmented Reality System for Physiotherapy Classroom. In Proc. CHI, pp. 1–12. ACM, May 2019. doi: 10 . 1145/3290605 . 3300464
  32. RagRug: A Toolkit for Situated Analytics. IEEE TVCG, pp. 1–1, 2022. doi: 10 . 1109/TVCG . 2022 . 3157058
  33. A. Fonnet and Y. Prié. Survey of Immersive Analytics. IEEE TVCG, 27(3):2101–2122, Mar. 2021. doi: 10 . 1109/TVCG . 2019 . 2929033
  34. Image-driven view management for augmented reality browsers. In Proc. ISMAR, pp. 177–186. IEEE, Nov. 2012. doi: 10 . 1109/ISMAR . 2012 . 6402555
  35. MultiFi: Multi Fidelity Interaction with Displays On and Around the Body. In Proc. CHI, pp. 3933–3942. ACM, Apr. 2015. doi: 10 . 1145/2702123 . 2702331
  36. Augmented Situated Visualization for Spatial and Context-Aware Decision-Making. In Proc. AVI, pp. 1–5. ACM, Oct. 2020. doi: 10 . 1145/3399715 . 3399838
  37. Augmented Reality for Subsurface Utility Engineering, Revisited. IEEE TVCG, 27(11):4119–4128, Nov. 2021. doi: 10 . 1109/TVCG . 2021 . 3106479
  38. Comparison of Augmented Reality Display Techniques to Support Medical Needle Insertion. IEEE TVCG, 26(12):3568–3575, Dec. 2020. doi: 10 . 1109/TVCG . 2020 . 3023637
  39. S. Henderson and S. Feiner. Exploring the Benefits of Augmented Reality Documentation for Maintenance and Repair. IEEE TVCG, 17(10):1355–1368, Oct. 2011. doi: 10 . 1109/TVCG . 2010 . 245
  40. Augmented reality in the psychomotor phase of a procedural task. In Proc. ISMAR, pp. 191–200. IEEE, Oct. 2011. doi: 10 . 1109/ISMAR . 2011 . 6092386
  41. Immersive Modular Factory Layout Planning using Augmented Reality. Procedia CIRP, 72:1112–1117, 2018. doi: 10 . 1016/j . procir . 2018 . 03 . 200
  42. J. Hertel and F. Steinicke. Augmented Reality for Maritime Navigation Assistance - Egocentric Depth Perception in Large Distance Outdoor Environments. In Proc. VR, pp. 122–130. IEEE, Mar. 2021. doi: 10 . 1109/VR50410 . 2021 . 00033
  43. F. Heyen and M. Sedlmair. Augmented reality visualization for musical instrument learning. In Proc. ISMIR, 2022.
  44. Augmented Viewport: An action at a distance technique for outdoor AR using distant and zoom lens cameras. In Proc. ISWC, pp. 1–4. IEEE, Oct. 2010. doi: 10 . 1109/ISWC . 2010 . 5665865
  45. Using Animated Augmented Reality to Cognitively Guide Assembly. J. Comput. Civ. Eng., 27(5):439–451, Sept. 2013. doi: 10 . 1061/(ASCE)CP . 1943-5487 . 0000184
  46. STREAM: Exploring the Combination of Spatially-Aware Tablets with Augmented Reality Head-Mounted Displays for Immersive Analytics. In Proc. CHI, pp. 1–14. ACM, May 2021. doi: 10 . 1145/3411764 . 3445298
  47. W. Javed and N. Elmqvist. Exploring the design space of composite visualization. In Proc. PacificVis, pp. 1–8. IEEE, Feb. 2012. doi: 10 . 1109/PacificVis . 2012 . 6183556
  48. Aroundplot: Focus+context interface for off-screen objects in 3D environments. Comput. Graphics, 35(4):841–853, Aug. 2011. doi: 10 . 1016/j . cag . 2011 . 04 . 005
  49. Interactive Focus and Context Visualization for Augmented Reality. In Proc. ISMAR, pp. 191–201. IEEE, Nov. 2007. doi: 10 . 1109/ISMAR . 2007 . 4538846
  50. Explosion Diagrams in Augmented Reality. In Proc. VR, pp. 71–78. IEEE, Mar. 2009. doi: 10 . 1109/VR . 2009 . 4811001
  51. Exploring the Design Space for Situated Glyphs to Support Dynamic Work Environments. In Pervasive Computing, Lecture Notes in Computer Science, pp. 70–78. Springer, 2011. doi: 10 . 1007/978-3-642-21726-5_5
  52. W. Köhler. Gestalt Psychology; an Introduction to New Concepts in Modern Psychology. Liveright, 1947.
  53. HiveFive: Immersion Preserving Attention Guidance in Virtual Reality. In Proc. CHI, pp. 1–13. ACM, Apr. 2020. doi: 10 . 1145/3313831 . 3376803
  54. MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis. In Proc. CHI, pp. 1–17. ACM, May 2021. doi: 10 . 1145/3411764 . 3445593
  55. F. Ledermann and D. Schmalstieg. APRIL: A high-level framework for creating augmented reality presentations. In Proc. VR, pp. 187–194. IEEE, Mar. 2005. doi: 10 . 1109/VR . 2005 . 1492773
  56. A Design Space For Data Visualisation Transformations Between 2D And 3D In Mixed-Reality Environments. In Proc. CHI, pp. 1–14. ACM, Apr. 2022. doi: 10 . 1145/3491102 . 3501859
  57. Shared Surfaces and Spaces: Collaborative Data Visualisation in a Co-located Immersive Environment. IEEE TVCG, 27(2):1171–1181, Feb. 2021. doi: 10 . 1109/TVCG . 2020 . 3030450
  58. Deimos: A Grammar of Dynamic Embodied Immersive Visualisation Morphs and Transitions. In Proc. CHI. ACM, Apr. 2023. doi: 10 . 1145/3544548 . 3580754
  59. Augmented Reality Views for Occluded Interaction. In Proc. CHI, pp. 1–12. ACM, May 2019. doi: 10 . 1145/3290605 . 3300676
  60. Comparing Video and Augmented Reality Assistance in Manual Assembly. In Proc. IE, pp. 147–150. IEEE, Sept. 2016. doi: 10 . 1109/IE . 2016 . 31
  61. A 3D Flexible and Tangible Magic Lens in Augmented Reality. In Proc. ISMAR, pp. 51–54. IEEE, Nov. 2007. doi: 10 . 1109/ISMAR . 2007 . 4538825
  62. Where Should We Put It? Layout and Placement Strategies of Documents in Augmented Reality for Collaborative Sensemaking. In Proc. CHI, pp. 1–16. ACM, Apr. 2022. doi: 10 . 1145/3491102 . 3501946
  63. Pearl: Physical Environment based Augmented Reality Lenses for In-Situ Human Movement Analysis. In Proc. CHI, pp. 1–15. ACM, Apr. 2023. doi: 10 . 1145/3544548 . 3580715
  64. Immersive Analytics. Lecture Notes in Computer Science. Springer International Publishing, 2018.
  65. E. Mendez and D. Schmalstieg. Importance masks for revealing occluded objects in augmented reality. In Proc. VRST, pp. 247–248. ACM, Nov. 2009. doi: 10 . 1145/1643928 . 1643988
  66. P. Milgram and F. Kishino. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Information Systems, vol. E77-D, no. 12:1321–1329, Dec. 1994.
  67. Retargeting Video Tutorials Showing Tools With Surface Contact to Augmented Reality. In Proc. CHI, pp. 6547–6558. ACM, May 2017. doi: 10 . 1145/3025453 . 3025688
  68. TrackCap: Enabling Smartphones for 3D Interaction on Mobile Head-Mounted Displays. In Proc. CHI, pp. 1–11. ACM, May 2019. doi: 10 . 1145/3290605 . 3300815
  69. Showing Data About People: A Design Space of Anthropographics. IEEE TVCG, 28(3):1661–1679, Mar. 2022. doi: 10 . 1109/TVCG . 2020 . 3023013
  70. A survey of diminished reality: Techniques for visually concealing, eliminating, and seeing through real objects. IPSJ Transactions on Computer Vision and Applications, 9(1):17, June 2017. doi: 10 . 1186/s41074-017-0028-1
  71. Handheld augmented reality indoor navigation with activity-based instructions. In Proc. MobileHCI, pp. 211–220. ACM, Aug. 2011. doi: 10 . 1145/2037373 . 2037406
  72. T. Munzner. Visualization Analysis and Design. A.K. Peters Visualization Series. CRC, 2014.
  73. The role of Depth and Gestalt cues in information-rich virtual environments. Int. J. Hum.-Comput. Stud., 69(1-2):30–51, Jan. 2011. doi: 10 . 1016/j . ijhcs . 2010 . 05 . 007
  74. Corsican Twin: Authoring In Situ Augmented Reality Visualisations in Virtual Reality. In Proc. AVI, pp. 1–9. ACM, Oct. 2020. doi: 10 . 1145/3399715 . 3399743
  75. ScalAR: Authoring Semantically Adaptive Augmented Reality Experiences in Virtual Reality. In Proc. CHI, pp. 1–18. ACM, Apr. 2022. doi: 10 . 1145/3491102 . 3517665
  76. P. Reipschläger and R. Dachselt. DesignAR: Immersive 3D-Modeling Combining Augmented Reality with Interactive Displays. In Proc. ISS, pp. 29–41. ACM, Nov. 2019. doi: 10 . 1145/3343055 . 3359718
  77. Personal Augmented Reality for Information Visualization on Large Interactive Displays. IEEE TVCG, 27(2):1182–1192, Feb. 2021. doi: 10 . 1109/TVCG . 2020 . 3030460
  78. Spatial measurements for medical augmented reality. In Proc. ISMAR, pp. 208–209. IEEE, Oct. 2005. doi: 10 . 1109/ISMAR . 2005 . 53
  79. G. Reitmayr and D. Schmalstieg. Collaborative augmented reality for outdoor navigation and information browsing. In Proc. LBS and TeleCartography, Jan. 2004.
  80. J. Rekimoto. Matrix: A realtime object identification and registration method for augmented reality. In Proc. APCHI, pp. 63–68. IEEE, 1998. doi: 10 . 1109/APCHI . 1998 . 704151
  81. The Revealing Flashlight: Interactive Spatial Augmented Reality for Detail Exploration of Cultural Heritage Artifacts. ACM J. Comput. Cult. Heritage, 7(2):6:1–6:18, June 2014. doi: 10 . 1145/2611376
  82. “In Your Face!”: Visualizing Fitness Tracker Data in Augmented Reality. In Proc. CHI EA, pp. 1–7. ACM, Apr. 2023. doi: 10 . 1145/3544549 . 3585912
  83. J. C. Roberts. State of the Art: Coordinated & Multiple Views in Exploratory Visualization. In Proc. CMV, pp. 61–71. IEEE, July 2007. doi: 10 . 1109/CMV . 2007 . 20
  84. Augmented reality in surgical procedures. In Proc. HVEI, vol. 6806, pp. 194–205. SPIE, Feb. 2008. doi: 10 . 1117/12 . 784155
  85. Egocentric space-distorting visualizations for rapid environment exploration in mobile mixed reality. In Proc. ISMAR, pp. 211–212. IEEE, Oct. 2009. doi: 10 . 1109/ISMAR . 2009 . 5336461
  86. M. Sareika and D. Schmalstieg. Urban Sketcher: Mixed Reality on Site for Urban Planning and Architecture. In Proc. ISMAR, pp. 27–30. IEEE, Nov. 2007. doi: 10 . 1109/ISMAR . 2007 . 4538821
  87. M. Satkowski and R. Dachselt. Investigating the Impact of Real-World Environments on the Perception of 2D Visualizations in Augmented Reality. In Proc. CHI, pp. 1–15. ACM, May 2021. doi: 10 . 1145/3411764 . 3445330
  88. ProxSituated visualization: An extended model of situated visualization using proxies for physical referents. In Proc. CHI. ACM, April 2023. doi: 10 . 1145/3544548 . 3580952
  89. Tangible Globes for Data Visualisation in Augmented Reality. In Proc. CHI, pp. 1–16. ACM, Apr. 2022. doi: 10 . 1145/3491102 . 3517715
  90. Handheld Augmented Reality for underground infrastructure visualization. Pers. Ubiquitous Comput., 13(4):281–291, May 2009. doi: 10 . 1007/s00779-008-0204-5
  91. Virtual redlining for civil engineering in real environments. In Proc. ISMAR, pp. 95–98. IEEE, Sept. 2008. doi: 10 . 1109/ISMAR . 2008 . 4637332
  92. D. Schmalstieg and G. Schaufler. Sewing Worlds Together With SEAMs: A Mechanism to Construct Complex Virtual Environments. Presence, 8(4):449–461, Aug. 1999. doi: 10 . 1162/105474699566332
  93. R. Schoenfelder and D. Schmalstieg. Augmented Reality for Industrial Building Acceptance. In Proc. VR, pp. 83–90. IEEE, Mar. 2008. doi: 10 . 1109/VR . 2008 . 4480755
  94. The Reality of the Situation: A Survey of Situated Analytics. IEEE TVCG, pp. 1–19, 2023. doi: 10 . 1109/TVCG . 2023 . 3285546
  95. B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Proc. VL, pp. 336–343. IEEE Comput. Soc. Press, 1996. doi: 10 . 1109/VL . 1996 . 545307
  96. AR Hero: Generating Interactive Augmented Reality Guitar Tutorials. In Proc. VRW, pp. 395–401. IEEE, Mar. 2022. doi: 10 . 1109/VRW55335 . 2022 . 00086
  97. The MADE-Axis: A Modular Actuated Device to Embody the Axis of a Data Dimension. Proc. ACM. Hum. Comput. Interact., 5(ISS):1–23, Nov. 2021. doi: 10 . 1145/3488546
  98. Model-Free Authoring by Demonstration of Assembly Instructions in Augmented Reality. IEEE TVCG, 28(11):3821–3831, Nov. 2022. doi: 10 . 1109/TVCG . 2022 . 3203104
  99. Virtual reality on a WIM: Interactive worlds in miniature. In Proc. CHI, pp. 265–272. ACM Press/Addison-Wesley Publishing Co., May 1995. doi: 10 . 1145/223904 . 223938
  100. Guideline and Tool for Designing an Assembly Task Support System Using Augmented Reality. In Proc. ISMAR, pp. 486–497. IEEE, Nov. 2020. doi: 10 . 1109/ISMAR50242 . 2020 . 00077
  101. Exploring distant objects with augmented reality. In Proc. JVRC, pp. 49–56. Eurographics Association, Dec. 2013. doi: 10 . 2312/EGVE . JVRC13 . 049-056
  102. Hedgehog labeling: View management techniques for external labels in 3D space. In Proc. VR, pp. 27–32. IEEE, Mar. 2014. doi: 10 . 1109/VR . 2014 . 6802046
  103. Adaptive information density for augmented reality displays. In Proc. VR, pp. 83–92. IEEE, Mar. 2016. doi: 10 . 1109/VR . 2016 . 7504691
  104. J. Thomas, ed. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Soc, 2005.
  105. Exploring Interactions with Printed Data Visualizations in Augmented Reality. IEEE TVCG, pp. 1–11, 2022. doi: 10 . 1109/TVCG . 2022 . 3209386
  106. A study of depth visualization techniques for virtual annotations in augmented reality. In Proc. VR, pp. 295–296. IEEE, Mar. 2005. doi: 10 . 1109/VR . 2005 . 1492802
  107. Mobile augmented reality for environmental monitoring. Pers. Ubiquitous Comput., 17(7):1515–1531, Oct. 2013. doi: 10 . 1007/s00779-012-0597-z
  108. Extended Overview Techniques for Outdoor Augmented Reality. IEEE TVCG, 18(4):565–572, Apr. 2012. doi: 10 . 1109/TVCG . 2012 . 44
  109. 3D magic lenses. In Proc. UIST, pp. 51–58. ACM, Nov. 1996. doi: 10 . 1145/237091 . 237098
  110. Towards Massively Multi-user Augmented Reality on Handheld Devices. In H. W. Gellersen, R. Want, and A. Schmidt, eds., Pervasive Computing, Lecture Notes in Computer Science, pp. 208–219. Springer, 2005. doi: 10 . 1007/11428572_13
  111. Comparing HMD-Based and Paper-Based Training. In Proc. ISMAR, pp. 134–142. IEEE, Oct. 2018. doi: 10 . 1109/ISMAR . 2018 . 00046
  112. S. White and S. Feiner. SiteLens: Situated visualization techniques for urban site visits. In Proc. CHI, pp. 1117–1120. ACM, Apr. 2009. doi: 10 . 1145/1518701 . 1518871
  113. S. M. White. Interaction and Presentation Techniques for Situated Visualization. PhD thesis, Columbia University, 2009.
  114. HydrogenAR: Interactive Data-Driven Presentation of Dispenser Reliability. In Proc. ISMAR, pp. 704–712. IEEE, Nov. 2020. doi: 10 . 1109/ISMAR50242 . 2020 . 00101
  115. Embedded Data Representations. IEEE TVCG, 23(1):461–470, Jan. 2017. doi: 10 . 1109/TVCG . 2016 . 2598608
  116. Indirect augmented reality. Comput. Graphics, 35(4):810–822, Aug. 2011. doi: 10 . 1016/j . cag . 2011 . 04 . 010
  117. Augmented reality instruction for object assembly based on markerless tracking. In Proc. I3D, pp. 95–102. ACM, Feb. 2016. doi: 10 . 1145/2856400 . 2856416
  118. Video-Annotated Augmented Reality Assembly Tutorials. In Proc. UIST, pp. 1010–1022. ACM, Oct. 2020. doi: 10 . 1145/3379337 . 3415819
  119. Toward a Deeper Understanding of the Role of Interaction in Information Visualization. IEEE TVCG, 13(6):1224–1231, Nov. 2007. doi: 10 . 1109/TVCG . 2007 . 70515
  120. Perspective Matters: Design Implications for Motion Guidance in Mixed Reality. In Proc. ISMAR, pp. 577–587. IEEE, Nov. 2020. doi: 10 . 1109/ISMAR50242 . 2020 . 00085
  121. STARE: Augmented Reality Data Visualization for Explainable Decision Support in Smart Environments. IEEE Access, 10:29543–29557, 2022. doi: 10 . 1109/ACCESS . 2022 . 3156697
  122. An authorable context-aware augmented reality system to assist the maintenance technicians. Int. J. Adv. Manuf. Technol., 66(9):1699–1714, June 2013. doi: 10 . 1007/s00170-012-4451-2
  123. FlyAR: Augmented Reality Supported Micro Aerial Vehicle Navigation. IEEE TVCG, 20(4):560–568, Apr. 2014. doi: 10 . 1109/TVCG . 2014 . 24
  124. Interactive 4D overview and detail visualization in augmented reality. In Proc. ISMAR, pp. 167–176. IEEE, Nov. 2012. doi: 10 . 1109/ISMAR . 2012 . 6402554
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Benjamin Lee (23 papers)
  2. Michael Sedlmair (34 papers)
  3. Dieter Schmalstieg (26 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com