Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

InstaSynth: Opportunities and Challenges in Generating Synthetic Instagram Data with ChatGPT for Sponsored Content Detection (2403.15214v1)

Published 22 Mar 2024 in cs.CY, cs.CL, and cs.SI

Abstract: LLMs raise concerns about lowering the cost of generating texts that could be used for unethical or illegal purposes, especially on social media. This paper investigates the promise of such models to help enforce legal requirements related to the disclosure of sponsored content online. We investigate the use of LLMs for generating synthetic Instagram captions with two objectives: The first objective (fidelity) is to produce realistic synthetic datasets. For this, we implement content-level and network-level metrics to assess whether synthetic captions are realistic. The second objective (utility) is to create synthetic data that is useful for sponsored content detection. For this, we evaluate the effectiveness of the generated synthetic data for training classifiers to identify undisclosed advertisements on Instagram. Our investigations show that the objectives of fidelity and utility may conflict and that prompt engineering is a useful but insufficient strategy. Additionally, we find that while individual synthetic posts may appear realistic, collectively they lack diversity, topic connectivity, and realistic user interaction patterns.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com