Searching Search Spaces: Meta-evolving a Geometric Encoding for Neural Networks (2403.14019v1)
Abstract: In evolutionary policy search, neural networks are usually represented using a direct mapping: each gene encodes one network weight. Indirect encoding methods, where each gene can encode for multiple weights, shorten the genome to reduce the dimensions of the search space and better exploit permutations and symmetries. The Geometric Encoding for Neural network Evolution (GENE) introduced an indirect encoding where the weight of a connection is computed as the (pseudo-)distance between the two linked neurons, leading to a genome size growing linearly with the number of genes instead of quadratically in direct encoding. However GENE still relies on hand-crafted distance functions with no prior optimization. Here we show that better performing distance functions can be found for GENE using Cartesian Genetic Programming (CGP) in a meta-evolution approach, hence optimizing the encoding to create a search space that is easier to exploit. We show that GENE with a learned function can outperform both direct encoding and the hand-crafted distances, generalizing on unseen problems, and we study how the encoding impacts neural network properties.
- G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, Dec. 1989. [Online]. Available: https://doi.org/10.1007/BF02551274
- T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as a Scalable Alternative to Reinforcement Learning,” 2017. [Online]. Available: http://arxiv.org/abs/1703.03864
- P. Templier, E. Rachelson, and D. G. Wilson, “A geometric encoding for neural network evolution,” in Proceedings of the Genetic and Evolutionary Computation Conference, ser. GECCO ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 919–927. [Online]. Available: https://doi.org/10.1145/3449639.3459361
- D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural Evolution Strategies,” in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Hong Kong, China: IEEE, Jun. 2008, pp. 3381–3387. [Online]. Available: http://ieeexplore.ieee.org/document/4631255/
- J. F. Miller and S. Harding, “Cartesian Genetic Programming,” Cartesian Genetic Programming, p. 25, 2008.
- K. O. Stanley and R. Miikkulainen, “Efficient evolution of neural network topologies,” in Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2. IEEE, 2002, pp. 1757–1762.
- T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp. 1–21, 2019. [Online]. Available: http://jmlr.org/papers/v20/18-598.html
- I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der medizin und biologie. Springer, 1978, pp. 83–114.
- N. Hansen, “The CMA Evolution Strategy: A Tutorial,” arXiv:1604.00772 [cs, stat], Apr. 2016, arXiv: 1604.00772. [Online]. Available: http://arxiv.org/abs/1604.00772
- R. Ros and N. Hansen, “A simple modification in cma-es achieving linear time and space complexity,” in International conference on parallel problem solving from nature. Springer, 2008, pp. 296–305.
- J. Schmidhuber, “Evolutionary principles in self-referential learning, or on learning how to learn: The meta-meta-… hook,” Ph.D. dissertation, Technische Universität München, 1987.
- J. D. Co-Reyes, Y. Miao, D. Peng, E. Real, S. Levine, Q. V. Le, H. Lee, and A. Faust, “Evolving Reinforcement Learning Algorithms,” arXiv:2101.03958 [cs], Jan. 2021, arXiv: 2101.03958. [Online]. Available: http://arxiv.org/abs/2101.03958
- C. Lu, J. G. Kuba, A. Letcher, L. Metz, C. S. de Witt, and J. Foerster, “Discovered policy optimisation,” 2022.
- M. T. Jackson, C. Lu, L. Kirsch, R. T. Lange, S. Whiteson, and J. N. Foerster, “DISCOVERING TEMPORALLY-AWARE REINFORCEMENT LEARNING ALGORITHMS,” 2023.
- J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt, S. Singh, and D. Silver, “Discovering reinforcement learning algorithms,” Advances in Neural Information Processing Systems, vol. 33, pp. 1060–1070, 2020.
- R. T. Lange, T. Schaul, Y. Chen, T. Zahavy, V. Dallibard, C. Lu, S. Singh, and S. Flennerhag, “Discovering Evolution Strategies via Meta-Black-Box Optimization,” Nov. 2022, arXiv:2211.11260 [cs]. [Online]. Available: http://arxiv.org/abs/2211.11260
- R. Lange, T. Schaul, Y. Chen, C. Lu, T. Zahavy, V. Dalibard, and S. Flennerhag, “Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference. Lisbon Portugal: ACM, Jul. 2023, pp. 929–937. [Online]. Available: https://dl.acm.org/doi/10.1145/3583131.3590496
- D. G. Wilson, K. Harrington, S. Cussat-Blanc, and H. Luga, “Evolving Differentiable Gene Regulatory Networks,” arXiv:1807.05948 [cs], Jul. 2018, arXiv: 1807.05948. [Online]. Available: http://arxiv.org/abs/1807.05948
- B. Hanin and D. Rolnick, “How to start training: The effect of initialization and architecture,” Advances in Neural Information Processing Systems, vol. 31, 2018.
- T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks,” The Journal of Machine Learning Research, vol. 22, no. 1, pp. 10 882–11 005, 2021.
- J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural networks,” in International Conference on Learning Representations, 2018.
- R. T. Lange and H. Sprekeler, “Lottery Tickets in Evolutionary Optimization: On Sparse Backpropagation-Free Trainability,” May 2023, arXiv:2306.00045 [cs]. [Online]. Available: http://arxiv.org/abs/2306.00045
- J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018. [Online]. Available: http://github.com/google/jax
- R. T. Lange, “evosax: Jax-based evolution strategies,” 2022. [Online]. Available: http://github.com/RobertTLange/evosax
- C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem, “Brax - A differentiable physics engine for large scale rigid body simulation,” 2021. [Online]. Available: http://github.com/google/brax