Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextual AD Narration with Interleaved Multimodal Sequence (2403.12922v1)

Published 19 Mar 2024 in cs.CV

Abstract: The Audio Description (AD) task aims to generate descriptions of visual elements for visually impaired individuals to help them access long-form video contents, like movie. With video feature, text, character bank and context information as inputs, the generated ADs are able to correspond to the characters by name and provide reasonable, contextual descriptions to help audience understand the storyline of movie. To achieve this goal, we propose to leverage pre-trained foundation models through a simple and unified framework to generate ADs with interleaved multimodal sequence as input, termed as Uni-AD. To enhance the alignment of features across various modalities with finer granularity, we introduce a simple and lightweight module that maps video features into the textual feature space. Moreover, we also propose a character-refinement module to provide more precise information by identifying the main characters who play more significant role in the video context. With these unique designs, we further incorporate contextual information and a contrastive loss into our architecture to generate more smooth and contextual ADs. Experiments on the MAD-eval dataset show that Uni-AD can achieve state-of-the-art performance on AD generation, which demonstrates the effectiveness of our approach. Code will be available at https://github.com/MCG-NJU/Uni-AD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hanlin Wang (17 papers)
  2. Zhan Tong (16 papers)
  3. Kecheng Zheng (48 papers)
  4. Yujun Shen (111 papers)
  5. Limin Wang (221 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.