Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel-wise Feature Decorrelation for Enhanced Learned Image Compression (2403.10936v1)

Published 16 Mar 2024 in eess.IV, cs.CV, and cs.MM

Abstract: The emerging Learned Compression (LC) replaces the traditional codec modules with Deep Neural Networks (DNN), which are trained end-to-end for rate-distortion performance. This approach is considered as the future of image/video compression, and major efforts have been dedicated to improving its compression efficiency. However, most proposed works target compression efficiency by employing more complex DNNS, which contributes to higher computational complexity. Alternatively, this paper proposes to improve compression by fully exploiting the existing DNN capacity. To do so, the latent features are guided to learn a richer and more diverse set of features, which corresponds to better reconstruction. A channel-wise feature decorrelation loss is designed and is integrated into the LC optimization. Three strategies are proposed and evaluated, which optimize (1) the transformation network, (2) the context model, and (3) both networks. Experimental results on two established LC methods show that the proposed method improves the compression with a BD-Rate of up to 8.06%, with no added complexity. The proposed solution can be applied as a plug-and-play solution to optimize any similar LC method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Farhad Pakdaman (10 papers)
  2. Moncef Gabbouj (167 papers)