Gauge Theory Bootstrap: Pion amplitudes and low energy parameters (2403.10772v3)
Abstract: Following the Gauge Theory Bootstrap method proposed in our previous work [arXiv:2309.12402], we compute pion scattering phase shifts for all partial waves with angular momentum $\ell\le 3$ up to 2 GeV and calculate the low energy $\chi$PT coefficients $\bar{\ell}{1,2,4,6}$. The method looks for the most general S-matrix that matches at low energy the tree level amplitudes of the non-linear sigma model and at high energy, QCD sum rules and form factors. This is a theoretical/numerical calculation that uses as only data the pion mass $m\pi$, pion decay constant $f_\pi$ and the QCD parameters $N_c=3$, $N_f=2$, $m_q$ and $\alpha_s$. All results are in reasonable agreement with experiment. In particular, we find the $\rho(770)$, $f_2(1270)$ and $\rho(1450)$ resonances. The interplay between the UV gauge theory and low energy pion physics is an example of a general situation where we know the microscopic theory as well as the effective theory of long wavelength fluctuations but we want to solve the strongly coupled dynamics at intermediate energies. The bootstrap builds a bridge between the low and high energy by determining the consistent S-matrix that matches both and provides, in this case, a new direction to understand the strongly coupled physics of gauge theories.
- Y. He and M. Kruczenski, “Bootstrapping gauge theories,” arXiv:2309.12402 [hep-th].
- G. Chew, The Analytic S Matrix: A Basis for Nuclear Democracy.
- Cambridge Univ. Press, Cambridge, 1966.
- M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, “The S-matrix bootstrap. Part I: QFT in AdS,” JHEP 11 (2017) 133, arXiv:1607.06109 [hep-th].
- M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, “The S-matrix bootstrap II: two dimensional amplitudes,” JHEP 11 (2017) 143, arXiv:1607.06110 [hep-th].
- M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, “The S-matrix bootstrap. Part III: higher dimensional amplitudes,” JHEP 12 (2019) 040, arXiv:1708.06765 [hep-th].
- M. Kruczenski, J. Penedones, and B. C. van Rees, “Snowmass White Paper: S-matrix Bootstrap,” arXiv:2203.02421 [hep-th].
- D. Karateev, S. Kuhn, and J. a. Penedones, “Bootstrapping Massive Quantum Field Theories,” JHEP 07 (2020) 035, arXiv:1912.08940 [hep-th].
- S. Weinberg, “Pion scattering lengths,” Phys. Rev. Lett. 17 (1966) 616–621.
- M. Shifman, A. Vainshtein, and V. Zakharov, “Qcd and resonance physics. theoretical foundations,” Nuclear Physics B 147 no. 5, (1979) 385–447.
- M. Shifman, A. Vainshtein, and V. Zakharov, “Qcd and resonance physics. applications,” Nuclear Physics B 147 no. 5, (1979) 448–518.
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, “QCD and Resonance Physics. The rho-omega Mixing,” Nucl. Phys. B 147 (1979) 519–534.
- V. A. Novikov, L. B. Okun, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, “Charmonium and Gluons: Basic Experimental Facts and Theoretical Introduction,” Phys. Rept. 41 (1978) 1–133.
- L. J. Reinders, “SPECTROSCOPY WITH QCD SUM RULES,” 9, 1981.
- L. J. Reinders, H. Rubinstein, and S. Yazaki, “Hadron Properties from QCD Sum Rules,” Phys. Rept. 127 (1985) 1.
- P. Gubler and D. Satow, “Recent Progress in QCD Condensate Evaluations and Sum Rules,” Prog. Part. Nucl. Phys. 106 (2019) 1–67, arXiv:1812.00385 [hep-ph].
- G. Peter Lepage and S. J. Brodsky, “Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wavefunctions and the form factors of mesons,” Physics Letters B 87 no. 4, (11, 1979) .
- B. Pire, “Exclusive reactions in QCD,” in Les Houches Summer School on Theoretical Physics, Session 66: Trends in Nuclear Physics, 100 Years Later, pp. 567–591. 7, 1996. arXiv:nucl-th/9612009.
- J. R. Pelaez and F. J. Yndurain, “The Pion-pion scattering amplitude,” Phys. Rev. D 71 (2005) 074016, arXiv:hep-ph/0411334.
- F. J. Yndurain, “Low-energy pion physics,” arXiv:hep-ph/0212282.
- G. Colangelo, J. Gasser, and H. Leutwyler, “ππ𝜋𝜋\pi\piitalic_π italic_π scattering,” Nucl. Phys. B 603 (2001) 125–179, arXiv:hep-ph/0103088.
- A. Guerrieri, J. Penedones, and P. Vieira, “S-matrix Bootstrap for Effective Field Theories: Massless Pions,” arXiv:2011.02802 [hep-th].
- A. L. Guerrieri, J. Penedones, and P. Vieira, “Bootstrapping QCD Using Pion Scattering Amplitudes,” Phys. Rev. Lett. 122 no. 24, (2019) 241604, arXiv:1810.12849 [hep-th].
- J. Albert and L. Rastelli, “Bootstrapping pions at large N,” JHEP 08 (2022) 151, arXiv:2203.11950 [hep-th].
- C. Fernandez, A. Pomarol, F. Riva, and F. Sciotti, “Cornering large-Nc𝑐{}_{c}start_FLOATSUBSCRIPT italic_c end_FLOATSUBSCRIPT QCD with positivity bounds,” JHEP 06 (2023) 094, arXiv:2211.12488 [hep-th].
- J. Albert and L. Rastelli, “Bootstrapping Pions at Large N𝑁Nitalic_N. Part II: Background Gauge Fields and the Chiral Anomaly,” arXiv:2307.01246 [hep-th].
- T. Ma, A. Pomarol, and F. Sciotti, “Bootstrapping the chiral anomaly at large Nc𝑐{}_{c}start_FLOATSUBSCRIPT italic_c end_FLOATSUBSCRIPT,” JHEP 11 (2023) 176, arXiv:2307.04729 [hep-th].
- J. Albert, J. Henriksson, L. Rastelli, and A. Vichi, “Bootstrapping mesons at large N𝑁Nitalic_N: Regge trajectory from spin-two maximization,” arXiv:2312.15013 [hep-th].
- A. Keshavarzi, K. S. Khaw, and T. Yoshioka, “Muon g-2: A review,” Nuclear Physics B 975 (2022) 115675.
- M. Davier, Z. Fodor, A. Gerardin, L. Lellouch, B. Malaescu, F. M. Stokes, K. K. Szabo, B. C. Toth, L. Varnhorst, and Z. Zhang, “Hadronic vacuum polarization: comparing lattice QCD and data-driven results in systematically improvable ways,” arXiv:2308.04221 [hep-ph].
- J. Gasser and H. Leutwyler, “Chiral perturbation theory to one loop,” Annals of Physics 158 no. 1, (1984) 142–210.
- J. Gasser, “Chiral perturbation theory and effective lagrangians,” Nuclear Physics B 279 no. 1, (1987) 65–79.
- S. Scherer, “Introduction to chiral perturbation theory,” Adv. Nucl. Phys. 27 (2003) 277, arXiv:hep-ph/0210398.
- Academic Press, 1976.
- Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2 ed., 2014.
- L. Córdova, Y. He, M. Kruczenski, and P. Vieira, “The O(N) S-matrix Monolith,” JHEP 04 (2020) 142, arXiv:1909.06495 [hep-th].
- Y. He, A. Irrgang, and M. Kruczenski, “A note on the S-matrix bootstrap for the 2d O(N) bosonic model,” JHEP 11 (2018) 093, arXiv:1805.02812 [hep-th].
- S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatte, J. H. Friedman, T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz, “Pi pi Partial Wave Analysis from Reactions pi+ p —>>> pi+ pi- Delta++ and pi+ p —>>> K+ K- Delta++ at 7.1-GeV/c,” Phys. Rev. D 7 (1973) 1279.
- M. Losty, V.Chaloupka, A.Ferrando, L.Montanet, E.Paul;, D.Yaffe, A.Zieminski, J.Alitti, B.Gandois, and J.Louie., “A study of ππ𝜋𝜋\pi\piitalic_π italic_π scattering from π−p𝜋𝑝\pi-pitalic_π - italic_p interactions at 3.93 gev/c,” Nuclear Phsyics B 69 (1974) 185–204.
- B. Hyams et al., “A Study of All the pi pi Phase Shift Solutions in the Mass Region 1.0-GeV to 1.8-GeV from pi- p –>>> pi- pi+ n at 17.2-GeV,” Nucl. Phys. B 100 (1975) 205–224.
- J. F. Donoghue, J. Gasser, and H. Leutwyler, “The decay of a light higgs boson,” Nuclear Physics B 343 no. 2, (1990) 341–368.
- S. Amendolia and Others, “A measurement of the space-like pion electromagnetic form factor,” Nuclear Physics B 277 (1986) 168–196.
- J. Bijnens, G. Colangelo, and P. Talavera, “The Vector and scalar form-factors of the pion to two loops,” JHEP 05 (1998) 014, arXiv:hep-ph/9805389.
- J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, “Pion-pion scattering at low energy,” Nucl. Phys. B 508 (1997) 263–310, arXiv:hep-ph/9707291.
- J. Bijnens, G. Colangelo, and J. Gasser, “K(l4) decays beyond one loop,” Nucl. Phys. B 427 (1994) 427–454, arXiv:hep-ph/9403390.
- G. J. Gounaris and J. J. Sakurai, “Finite width corrections to the vector meson dominance prediction for ρ→e+e−→𝜌superscript𝑒superscript𝑒\rho\to e^{+}e^{-}italic_ρ → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 21 (1968) 244–247.
- M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995.
- F. Halzen and A. Martin, Quarks and Leptons. John Wilet and Sons, New York, 1984.
- Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- C. Ewerz, M. Maniatis, and O. Nachtmann, “A model for soft high-energy scattering: Tensor pomeron and vector odderon,” Annals of Physics 342 (2014) 31–77.
- J. Sakurai, current and mesons. The University of Chicago Press, Chicago, London, 1973.
- B. Ananthanarayan, I. Caprini, G. Colangelo, J. Gasser, and H. Leutwyler, “Scalar form factors of light mesons,” Physics Letters B 602 no. 3-4, (Nov, 2004) 218–225.
- X.-B. Tong, J.-P. Ma, and F. Yuan, “Gluon gravitational form factors at large momentum transfer,” Physics Letters B 823 (Dec., 2021) 136751.
- K. Raya, Z.-F. Cui, L. Chang, J. M. Morgado, C. D. Roberts, and J. Rodríguez-Quintero, “Revealing pion and kaon structure via generalised parton distributions *,” Chinese Physics C 46 no. 1, (Jan, 2022) 013105.
- S. Kumano, Q.-T. Song, and O. V. Teryaev, “Hadron tomography by generalized distribution amplitudes in the pion-pair production process γ*γ→π0π0→superscript𝛾𝛾superscript𝜋0superscript𝜋0{\gamma}^{*}\gamma\rightarrow{\pi}^{0}{\pi}^{0}italic_γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_γ → italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and gravitational form factors for pion,” Phys. Rev. D 97 (Jan, 2018) 014020.
- X.-B. Tong, J.-P. Ma, and F. Yuan, “Perturbative calculations of gravitational form factors at large momentum transfer,” Journal of High Energy Physics 2022 no. 10, (Oct., 2022) .
- P. Hoodbhoy, X.-d. Ji, and F. Yuan, “Probing quark distribution amplitudes through generalized parton distributions at large momentum transfer,” Phys. Rev. Lett. 92 (2004) 012003, arXiv:hep-ph/0309085.
- K. Tanaka, “Operator relations for gravitational form factors of a spin-0 hadron,” Physical Review D 98 no. 3, (Aug., 2018) .
- D. Karateev, “Two-point functions and bootstrap applications in quantum field theories,” JHEP 02 (2022) 186, arXiv:2012.08538 [hep-th].
- H. Chen, A. L. Fitzpatrick, and D. Karateev, “Bootstrapping 2d ϕitalic-ϕ\phiitalic_ϕ44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT theory with Hamiltonian truncation data,” JHEP 02 (2022) 146, arXiv:2107.10286 [hep-th].
- M. Correia, J. Penedones, and A. Vuignier, “Injecting the UV into the bootstrap: Ising Field Theory,” JHEP 08 (2023) 108, arXiv:2212.03917 [hep-th].
- L. Cordova, M. Correia, A. Georgoudis, and A. Vuignier, “The O(N) monolith reloaded: sum rules and Form Factor Bootstrap,” JHEP 01 (2024) 093, arXiv:2311.03031 [hep-th].
- S. Narison, QCD as a Theory of Hadrons: From Partons to Confinement. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2004.
- S. Caron-Huot, A. Pokraka, and Z. Zahraee, “Two-point sum-rules in three-dimensional Yang-Mills theory,” JHEP 01 (2024) 195, arXiv:2309.04472 [hep-th].
- M. F. Zoller and K. G. Chetyrkin, “Ope of the energy-momentum tensor correlator in massless qcd,” Journal of High Energy Physics 2012 no. 12, (Dec., 2012) .
- J. I. Latorre and P. Pascual, “QCD Sum Rules and the q¯qq¯q¯𝑞𝑞¯𝑞𝑞\bar{q}q\bar{q}qover¯ start_ARG italic_q end_ARG italic_q over¯ start_ARG italic_q end_ARG italic_q System,” J. Phys. G 11 (1985) L231.
- M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1.” http://cvxr.com/cvx, Mar., 2014.
- M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds., Lecture Notes in Control and Information Sciences, pp. 95–110. Springer-Verlag Limited, 2008.
- No. pt. 1 in Berichte über verteilte messysteme. Cambridge University Press, 2004.
- http://docs.mosek.com/latest/toolbox/index.html.
- Y. He and M. Kruczenski, “S-matrix bootstrap in 3+1 dimensions: regularization and dual convex problem,” JHEP 08 (2021) 125, arXiv:2103.11484 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.