Papers
Topics
Authors
Recent
2000 character limit reached

The Algebraic Page Curve (2403.09165v2)

Published 14 Mar 2024 in hep-th

Abstract: The Page curve describing the process of black hole evaporation is derived in terms of a family, parametrized in terms of the evaporation time, of finite type II_1 factors, associated, respectively, to the entanglement wedges of the black hole and the radiation. The so defined Page curve measures the relative continuous dimension of the black hole and the radiation along the evaporation process. The transfer of information is quantitatively defined in terms of the Murray von Neumann parameter describing the change of the spatial properties of the factors during the evaporation. In the simplest case the generator of the evaporation process is defined in terms of the action of the fundamental group of the hyperfinite type II_1 factor. In this setup the Page curve describes a phase transition with the transfer of information as order parameter. We discuss the limits of either a type I or a type III description of the black hole evaporation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. D. Bekenstein,“Black holes and entropy,” Phys. Rev. D 7 (1973), 2333-2346 doi:10.1103/PhysRevD.7.2333
  2. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “The entropy of Hawking radiation,” Rev. Mod. Phys. 93 (2021) no.3, 035002 doi:10.1103/RevModPhys.93.035002 [arXiv:2006.06872 [hep-th]].
  3. L. Susskind and J. Uglum, “Black Hole Entropy In Canonical Quantum Gravity and Superstring Theory,” Phys. Rev. D50 (1994) 2700-11, arXiv:hep-th/9401070.
  4. S. Leutheusser and H. Liu, ”Emergent times in holographic duality” 2112.12156.
  5. S. Leutheusser and H. Liu, [arXiv:2112.12156 [hep-th]].
  6. E. Witten, ”Gravity and the Crossed Product” [arXiv:2112.12828 [hep-th]].
  7. V. Chandrasekaran, R. Longo, G. Penington and E. Witten, “An Algebra of Observables for de Sitter Space,” [arXiv:2206.10780 [hep-th]].
  8. V. Chandrasekaran, G. Penington and E. Witten, “Large N algebras and generalized entropy,” [arXiv:2209.10454 [hep-th]].
  9. C. Gomez, “Traces and Time: a de Sitter Black Hole correspondence,” [arXiv:2307.01841 [hep-th]].
  10. E. Witten, “A Background Independent Algebra in Quantum Gravity,” [arXiv:2308.03663 [hep-th]].
  11. C. Gomez, “On the algebraic meaning of quantum gravity for closed Universes,” [arXiv:2311.01952 [hep-th]].
  12. R. Longo and E. Witten, “A note on continuous entropy,” Pure Appl. Math. Quart. 19 (2023) no.5, 2501-2523 doi:10.4310/PAMQ.2023.v19.n5.a5 [arXiv:2202.03357 [math-ph]].
  13. A. Connes: ”Une classification des facteurs de type III”,Ann. Sci. Ecole Norm.Sup.6, 133?252 (1973)
  14. M.Takesaki ”Duality for Crossed Products and the Structure of von Neumann Algebras of type III” Berkeley preprint 1973
  15. V.F.R. Jones ”Von Neumann Algebras” Vanderbilt 2015
  16. C. Anantharaman and S. Popa, ”An introduction to II1 factors”
  17. N. Engelhardt and H. Liu, “Algebraic ER=EPR and Complexity Transfer,”
  18. U.Haagerup ”Connes’ bicentralizer problem and uniqueness of the injective factor of type I⁢I⁢I1𝐼𝐼subscript𝐼1III_{1}italic_I italic_I italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT 1985
  19. N. Engelhardt and Å. Folkestad, “Canonical purification of evaporating black holes,” Phys. Rev. D 105 (2022) no.8, 086010 doi:10.1103/PhysRevD.105.086010 [arXiv:2201.08395 [hep-th]].
  20. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys. 61 (2013), 781-811 doi:10.1002/prop.201300020 [arXiv:1306.0533 [hep-th]].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.