IAMCV Multi-Scenario Vehicle Interaction Dataset (2403.08455v1)
Abstract: The acquisition and analysis of high-quality sensor data constitute an essential requirement in shaping the development of fully autonomous driving systems. This process is indispensable for enhancing road safety and ensuring the effectiveness of the technological advancements in the automotive industry. This study introduces the Interaction of Autonomous and Manually-Controlled Vehicles (IAMCV) dataset, a novel and extensive dataset focused on inter-vehicle interactions. The dataset, enriched with a sophisticated array of sensors such as Light Detection and Ranging, cameras, Inertial Measurement Unit/Global Positioning System, and vehicle bus data acquisition, provides a comprehensive representation of real-world driving scenarios that include roundabouts, intersections, country roads, and highways, recorded across diverse locations in Germany. Furthermore, the study shows the versatility of the IAMCV dataset through several proof-of-concept use cases. Firstly, an unsupervised trajectory clustering algorithm illustrates the dataset's capability in categorizing vehicle movements without the need for labeled training data. Secondly, we compare an online camera calibration method with the Robot Operating System-based standard, using images captured in the dataset. Finally, a preliminary test employing the YOLOv8 object-detection model is conducted, augmented by reflections on the transferability of object detection across various LIDAR resolutions. These use cases underscore the practical utility of the collected dataset, emphasizing its potential to advance research and innovation in the area of intelligent vehicles.
- (2023) IAMCV dataset description. Department Intelligent Transport Systems, Johannes Kepler University Linz. [Online]. Available: https://www.jku.at/intelligent-transport-systems/iamcv-dataset
- N. Certad, W. Morales-Alvarez, G. Novotny, and C. Olaverri-Monreal, “JKU-ITS Automobile for Research on Autonomous Vehicles,” in Computer Aided Systems Theory – EUROCAST 2022, R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds. Cham: Springer International Publishing, 2023, pp. 3–10.
- A. V. Barrio, W. M. Alvarez, C. Olaverri-Monreal, and J. E. N. Hernández, “Development and validation of an open architecture for autonomous vehicle control,” in 2023 IEEE Intelligent Vehicles Symposium (IV), 2023, pp. 1–6.
- P. Tkachenko, N. Certad, G. Singer, C. Olaverri-Monreal, and L. Del Re, “The JKU DORA Traffic Dataset,” IEEE Access, vol. 10, pp. 92 673–92 680, 2022.
- V. G. Kovvali, V. Alexiadis, and L. Zhang PE, “Video-based vehicle trajectory data collection,” in Transportation Research Board 86th Annual Meeting, 2007.
- J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein, “The inD Dataset: A Drone Dataset of Naturalistic Road User Trajectories at German Intersections,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1929–1934.
- R. Krajewski, T. Moers, J. Bock, L. Vater, and L. Eckstein, “The rounD Dataset: A Drone Dataset of Road User Trajectories at Roundabouts in Germany,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020, pp. 1–6.
- R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018, pp. 2118–2125.
- T. Moers, L. Vater, R. Krajewski, J. Bock, A. Zlocki, and L. Eckstein, “The exiD Dataset: A Real-World Trajectory Dataset of Highly Interactive Highway Scenarios in Germany,” in 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 958–964.
- W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and M. Tomizuka, “INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps,” arXiv:1910.03088 [cs, eess], 2019.
- A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics: The KITTI Dataset,” International Journal of Robotics Research (IJRR), 2013.
- S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, and J. McBride, “Ford Multi-AV Seasonal Dataset,” The International Journal of Robotics Research, vol. 39, no. 12, pp. 1367–1376, 2020. [Online]. Available: https://doi.org/10.1177/0278364920961451
- R. Izquierdo, A. Quintanar, I. Parra, D. Fernández-Llorca, and M. A. Sotelo, “The PREVENTION dataset: a novel benchmark for PREdiction of VEhicles iNTentIONs,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Oct 2019, pp. 3114–3121.
- Z. Yan, L. Sun, T. Krajnik, and Y. Ruichek, “EU Long-term Dataset with Multiple Sensors for Autonomous Driving,” in Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
- S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov, “Large Scale Interactive Motion Forecasting for Autonomous Driving : The Waymo Open Motion Dataset,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society, oct 2021, pp. 9690–9699. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00957
- W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km: The Oxford RobotCar Dataset,” The International Journal of Robotics Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017. [Online]. Available: http://dx.doi.org/10.1177/0278364916679498
- D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The Oxford Radar RobotCar Dataset: A Radar Extension to the Oxford RobotCar Dataset,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, 2020. [Online]. Available: https://arxiv.org/abs/1909.01300
- H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal dataset for autonomous driving,” in CVPR, 2020.
- J. Mao, M. Niu, C. Jiang, H. Liang, J. Chen, X. Liang, Y. Li, C. Ye, W. Zhang, Z. Li, J. Yu, H. Xu, and C. Xu, “One Million Scenes for Autonomous Driving: ONCE Dataset,” 2021.
- M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, May 2009.
- G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
- J. Beltrán, C. Guindel, A. de la Escalera, and F. García, “Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor Setups,” IEEE Transactions on Intelligent Transportation Systems, 2022.
- Y. Xu, W. Yan, H. Sun, G. Yang, and J. Luo, “Centerface: Joint face detection and alignment using face as point,” in arXiv:1911.03599, 2019.
- S. M. Silva and C. R. Jung, “License plate detection and recognition in unconstrained scenarios,” in 2018 European Conference on Computer Vision (ECCV), Sep 2018, pp. 580–596.
- J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung, L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez, M. Jänicke, S. Mirashi, C. Savani, M. Sturm, O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth, “A2D2: Audi Autonomous Driving Dataset,” 2020. [Online]. Available: https://www.a2d2.audi
- M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1844–1861, 2019.
- A. Bender, G. Agamennoni, J. R. Ward, S. Worrall, and E. M. Nebot, “An unsupervised approach for inferring driver behavior from naturalistic driving data,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3325–3336, 2015.
- J. F. Canny, “Finding edges and lines in images,” AI Technical Reports (1964 - 2004), 1983.
- E. Del Re, A. Aghanouri, and C. Olaverri-Monreal, “Framework for Modeling Naturalistic Driving Behavior in Multi-Vehicle Scenarios,” in 2024 IEEE Intelligent Vehicles Symposium (IV), 2024, under Review.