Superconformal indices and localization in $N=2B$ quantum mechanics (2403.07665v2)
Abstract: Superconformal `type B' quantum mechanical sigma models arise in a variety of interesting contexts, such as the description of D-brane bound states in an AdS$_2$ decoupling limit. Focusing on $N=2B$ models, we study superconformal indices which count short multiplets and provide an alternative to the standard Witten index, as the latter suffers from infrared issues. We show that the basic index receives contributions from lowest Landau level states in an effective magnetic field and that, due to the noncompactness of the target space, it is typically divergent. Fortunately, the models of interest possess an additional target space isometry which allows for the definition of a well-behaved refined index. We compute this index using localization of the functional integral and find that the result agrees with a naive application of the Atiyah-Bott fixed point formula outside of it's starting assumptions. In the simplest examples, this formula can also be directly verified by explicitly computing the short multiplet spectrum.
- V. de Alfaro, S. Fubini, and G. Furlan, “Conformal Invariance in Quantum Mechanics,” Nuovo Cim. A34 (1976) 569.
- R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, “Lectures on Superconformal Quantum Mechanics and Multi-Black Hole Moduli Spaces,” NATO Sci. Ser. C 556 (2000) 255–284, arXiv:hep-th/9911066.
- S. Fedoruk, E. Ivanov, and O. Lechtenfeld, “Superconformal Mechanics,” J. Phys. A 45 (2012) 173001, arXiv:1112.1947 [hep-th].
- S. Fubini and E. Rabinovici, “Superconformal Quantum Mechanics,” Nucl. Phys. B 245 (1984) 17.
- E. Witten, “Constraints on Supersymmetry Breaking,” Nucl. Phys. B 202 (1982) 253.
- N. Dorey and A. Singleton, “An Index for Superconformal Quantum Mechanics,” arXiv:1812.11816 [hep-th].
- A. E. Barns-Graham and N. Dorey, “A Superconformal Index for HyperKähler Cones,” arXiv:1812.04565 [hep-th].
- N. Dorey and D. Zhang, “Superconformal quantum mechanics on Kähler cones,” JHEP 05 (2020) 115, arXiv:1911.06787 [hep-th].
- A. V. Smilga, Differential Geometry through Supersymmetric Glasses. WSP, 2020.
- F. Benini, K. Hristov, and A. Zaffaroni, “Black hole microstates in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT from supersymmetric localization,” JHEP 05 (2016) 054, arXiv:1511.04085 [hep-th].
- J. Michelson and A. Strominger, “The Geometry of (super)conformal quantum mechanics,” Commun. Math. Phys. 213 (2000) 1–17, arXiv:hep-th/9907191.
- J. Michelson and A. Strominger, “Superconformal multiblack hole quantum mechanics,” JHEP 09 (1999) 005, arXiv:hep-th/9908044.
- R. Britto-Pacumio, A. Strominger, and A. Volovich, “Two black hole bound states,” JHEP 03 (2001) 050, arXiv:hep-th/0004017.
- A. Sen, “Entropy Function and AdS(2) / CFT(1) Correspondence,” JHEP 11 (2008) 075, arXiv:0805.0095 [hep-th].
- I. Bena, P. Heidmann, and D. Turton, “AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography: mind the cap,” JHEP 12 (2018) 028, arXiv:1806.02834 [hep-th].
- F. Denef, “Quantum quivers and Hall / hole halos,” JHEP 10 (2002) 023, arXiv:hep-th/0206072 [hep-th].
- D. Mirfendereski, J. Raeymaekers, and D. Van Den Bleeken, “Superconformal mechanics of AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT D-brane boundstates,” arXiv:2009.07107 [hep-th].
- D. Mirfendereski, J. Raeymaekers, C. Şanlı, and D. Van den Bleeken, “The geometry of gauged (super)conformal mechanics,” JHEP 08 (2022) 081, arXiv:2203.10167 [hep-th].
- D. Anninos, T. Anous, P. de Lange, and G. Konstantinidis, “Conformal quivers and melting molecules,” JHEP 03 (2015) 066, arXiv:1310.7929 [hep-th].
- J. de Boer, S. El-Showk, I. Messamah, and D. Van den Bleeken, “Quantizing N=2 Multicenter Solutions,” JHEP 05 (2009) 002, arXiv:0807.4556 [hep-th].
- J. de Boer, S. El-Showk, I. Messamah, and D. Van den Bleeken, “A Bound on the entropy of supergravity?,” JHEP 02 (2010) 062, arXiv:0906.0011 [hep-th].
- J. Manschot, B. Pioline, and A. Sen, “A Fixed point formula for the index of multi-centered N=2 black holes,” JHEP 05 (2011) 057, arXiv:1103.1887 [hep-th].
- K. Hori, H. Kim, and P. Yi, “Witten Index and Wall Crossing,” JHEP 01 (2015) 124, arXiv:1407.2567 [hep-th].
- I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, “Scaling BPS Solutions and pure-Higgs States,” JHEP 11 (2012) 171, arXiv:1205.5023 [hep-th].
- J. Manschot, B. Pioline, and A. Sen, “From Black Holes to Quivers,” JHEP 11 (2012) 023, arXiv:1207.2230 [hep-th].
- M. Bullimore, A. E. V. Ferrari, and H. Kim, “The 3d twisted index and wall-crossing,” SciPost Phys. 12 no. 6, (2022) 186, arXiv:1912.09591 [hep-th].
- F. Benini, S. Soltani, and Z. Zhang, “A quantum mechanics for magnetic horizons,” JHEP 05 (2023) 070, arXiv:2212.00672 [hep-th].
- F. Benini, T. Reis, S. Soltani, and Z. Zhang, “𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 SYK models with dynamical bosons and fermions,” arXiv:2402.08414 [hep-th].
- G. Papadopoulos, “Conformal and superconformal mechanics,” Class. Quant. Grav. 17 (2000) 3715–3742, arXiv:hep-th/0002007 [hep-th].
- S. Choi, S. Kim, E. Lee, and J. Lee, “From giant gravitons to black holes,” JHEP 11 (2023) 086, arXiv:2207.05172 [hep-th].
- R. Arai, S. Fujiwara, Y. Imamura, T. Mori, and D. Yokoyama, “Finite-N𝑁Nitalic_N corrections to the M-brane indices,” JHEP 11 (2020) 093, arXiv:2007.05213 [hep-th].
- D. Martelli, J. Sparks, and S.-T. Yau, “The Geometric dual of a-maximisation for Toric Sasaki-Einstein manifolds,” Commun. Math. Phys. 268 (2006) 39–65, arXiv:hep-th/0503183.
- M. F. Atiyah and R. Bott, “A lefschetz fixed point formula for elliptic complexes: I,” Annals of Mathematics 86 no. 2, (1967) 374–407.
- L. Alvarez-Gaume, “Supersymmetry and the Atiyah-Singer Index Theorem,” Commun. Math. Phys. 90 (1983) 161.
- L. Alvarez-Gaume, “Supersymmetry and Index Theory,” in 1984 NATO ASI on Supersymmetry. 1986.
- P. Claus, R. Kallosh, and A. Van Proeyen, “Conformal symmetry on world volumes of branes,” arXiv:hep-th/9812066 [hep-th].
- F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,” JHEP 11 (2011) 129, arXiv:hep-th/0702146.
- G. Junker, Supersymmetric methods in quantum and statistical physics. Springer Science & Business Media, 2012.
- R. Akhoury and A. Comtet, “Anomalous behaviour of the witten index-exactly soluble models,” Nuclear Physics B 246 no. 2, (1984) 253–278.
- S.-J. Lee and P. Yi, “Witten Index for Noncompact Dynamics,” JHEP 06 (2016) 089, arXiv:1602.03530 [hep-th].
- S. Fedoruk and A. Smilga, “Comments on HKT supersymmetric sigma models and their Hamiltonian reduction,” J. Phys. A 48 no. 21, (2015) 215401, arXiv:1408.1538 [hep-th].
- G. W. Gibbons and P. Rychenkova, “Cones, triSasakian structures and superconformal invariance,” Phys. Lett. B 443 (1998) 138–142, arXiv:hep-th/9809158.
- C. P. Boyer and K. Galicki, Sasakian Geometry. Oxford University Press, Oxford, 2008.
- T. Eguchi, P. B. Gilkey, and A. J. Hanson, “Gravitation, Gauge Theories and Differential Geometry,” Phys. Rept. 66 (1980) 213.
- A. V. Smilga, “Supersymmetric proof of the Hirzebruch-Riemann-Roch theorem for non-Kahler manifolds,” SIGMA 8 (2012) 003, arXiv:1109.2867 [math-ph].
- M. Braverman, “Index theorem for equivariant Dirac operators on non-compact manifolds,” arXiv e-prints (Nov., 2000) math–ph/0011045, arXiv:math-ph/0011045 [math-ph].
- M. Vergne, “Applications of equivariant cohomology,” arXiv preprint math/0607389 (2006) .
- D. Friedan and P. Windey, “Supersymmetric Derivation of the Atiyah-Singer Index and the Chiral Anomaly,” Nucl. Phys. B 235 (1984) 395–416.
- J. Raeymaekers, C. Sanli, and D. Van den Bleeken, “Superconformal Symmetry and Index Theory,” In Preparation .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.