Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Privacy Auditing with Diffusion Models (2403.07588v1)

Published 12 Mar 2024 in cs.LG and cs.CR

Abstract: Image reconstruction attacks on machine learning models pose a significant risk to privacy by potentially leaking sensitive information. Although defending against such attacks using differential privacy (DP) has proven effective, determining appropriate DP parameters remains challenging. Current formal guarantees on data reconstruction success suffer from overly theoretical assumptions regarding adversary knowledge about the target data, particularly in the image domain. In this work, we empirically investigate this discrepancy and find that the practicality of these assumptions strongly depends on the domain shift between the data prior and the reconstruction target. We propose a reconstruction attack based on diffusion models (DMs) that assumes adversary access to real-world image priors and assess its implications on privacy leakage under DP-SGD. We show that (1) real-world data priors significantly influence reconstruction success, (2) current reconstruction bounds do not model the risk posed by data priors well, and (3) DMs can serve as effective auditing tools for visualizing privacy leakage.

Summary

We haven't generated a summary for this paper yet.