Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-Trained Model Recommendation for Downstream Fine-tuning (2403.06382v1)

Published 11 Mar 2024 in cs.CV, cs.AI, and cs.LG

Abstract: As a fundamental problem in transfer learning, model selection aims to rank off-the-shelf pre-trained models and select the most suitable one for the new target task. Existing model selection techniques are often constrained in their scope and tend to overlook the nuanced relationships between models and tasks. In this paper, we present a pragmatic framework \textbf{Fennec}, delving into a diverse, large-scale model repository while meticulously considering the intricate connections between tasks and models. The key insight is to map all models and historical tasks into a transfer-related subspace, where the distance between model vectors and task vectors represents the magnitude of transferability. A large vision model, as a proxy, infers a new task's representation in the transfer space, thereby circumventing the computational burden of extensive forward passes. We also investigate the impact of the inherent inductive bias of models on transfer results and propose a novel method called \textbf{archi2vec} to encode the intricate structures of models. The transfer score is computed through straightforward vector arithmetic with a time complexity of $\mathcal{O}(1)$. Finally, we make a substantial contribution to the field by releasing a comprehensive benchmark. We validate the effectiveness of our framework through rigorous testing on two benchmarks. The benchmark and the code will be publicly available in the near future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiameng Bai (1 paper)
  2. Sai Wu (25 papers)
  3. Jie Song (217 papers)
  4. Junbo Zhao (86 papers)
  5. Gang Chen (592 papers)