Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Parameter Estimation for Continuously Monitored Quantum Systems (2403.04648v2)

Published 7 Mar 2024 in quant-ph, cs.SY, and eess.SY

Abstract: In this work, we consider the problem of online (real-time, single-shot) estimation of static or slow-varying parameters along quantum trajectories in quantum dynamical systems. Based on the measurement signal of a continuously-monitored quantum system, we propose a recursive algorithm for computing the maximum likelihood estimate of unknown parameters using an approach based on stochastic gradient ascent on the log-likelihood function. We formulate the algorithm in both discrete-time and continuous-time and illustrate the performance of the algorithm through simulations of a simple two-level system undergoing homodyne measurement from which we are able to track multiple parameters simultaneously.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. P. Rouchon, “A tutorial introduction to quantum stochastic master equations based on the qubit/photon system,” Annual Reviews in Control, vol. 54, pp. 252–261, 2022.
  2. F. Verstraete, A. C. Doherty, and H. Mabuchi, “Sensitivity optimization in quantum parameter estimation,” Physical Review A, vol. 64, no. 3, p. 032111, Aug. 2001.
  3. J. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, “Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry,” Physical Review Letters, vol. 91, no. 25, p. 250801, Dec. 2003.
  4. J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi, “Robust quantum parameter estimation: Coherent magnetometry with feedback,” Physical Review A, vol. 69, no. 3, p. 032109, Mar. 2004.
  5. J. Amorós-Binefa and J. Kołodyński, “Noisy atomic magnetometry in real time,” New Journal of Physics, vol. 23, no. 12, p. 123030, Dec. 2021.
  6. J. Gambetta and H. M. Wiseman, “State and dynamical parameter estimation for open quantum systems,” Physical Review A, vol. 64, no. 4, p. 042105, Sep. 2001.
  7. P. Warszawski, J. Gambetta, and H. M. Wiseman, “Dynamical parameter estimation using realistic photodetection,” Physical Review A, vol. 69, no. 4, p. 042104, Apr. 2004.
  8. S. Gammelmark and K. Mølmer, “Bayesian parameter inference from continuously monitored quantum systems,” Physical Review A, vol. 87, no. 3, p. 032115, Mar. 2013.
  9. A. H. Kiilerich and K. Mølmer, “Bayesian parameter estimation by continuous homodyne detection,” Physical Review A, vol. 94, no. 3, p. 032103, Sep. 2016.
  10. B. A. Chase and J. M. Geremia, “Single-shot parameter estimation via continuous quantum measurement,” Physical Review A, vol. 79, no. 2, p. 022314, Feb. 2009.
  11. A. Negretti and K. Mølmer, “Estimation of classical parameters via continuous probing of complementary quantum observables,” New Journal of Physics, vol. 15, no. 12, p. 125002, Dec. 2013.
  12. P. Six, P. Campagne-Ibarcq, L. Bretheau, B. Huard, and P. Rouchon, “Parameter estimation from measurements along quantum trajectories,” in 2015 54th IEEE Conference on Decision and Control (CDC), Dec. 2015, pp. 7742–7748.
  13. J. F. Ralph, S. Maskell, and K. Jacobs, “Multiparameter estimation along quantum trajectories with sequential Monte Carlo methods,” Physical Review A, vol. 96, no. 5, p. 052306, Nov. 2017.
  14. M. Bompais, N. H. Amini, and C. Pellegrini, “Parameter estimation for quantum trajectories: Convergence result,” in 2022 IEEE 61st Conference on Decision and Control (CDC), Dec. 2022, pp. 5161–5166.
  15. J. F. Ralph, K. Jacobs, and C. D. Hill, “Frequency tracking and parameter estimation for robust quantum state estimation,” Physical Review A, vol. 84, no. 5, p. 052119, Nov. 2011.
  16. L. Cortez, A. Chantasri, L. P. García-Pintos, J. Dressel, and A. N. Jordan, “Rapid estimation of drifting parameters in continuously measured quantum systems,” Physical Review A, vol. 95, no. 1, p. 012314, Jan. 2017.
  17. P. Six, P. Campagne-Ibarcq, I. Dotsenko, A. Sarlette, B. Huard, and P. Rouchon, “Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence,” Physical Review A, vol. 93, no. 1, p. 012109, Jan. 2016.
  18. S. C. Surace and J.-P. Pfister, “Online maximum-likelihood estimation of the parameters of partially observed diffusion processes,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2814–2829, Jul. 2019.
  19. V. E. Beneš, “Exact finite-dimensional filters for certain diffusions with nonlinear drift,” Stochastics, vol. 5, no. 1-2, pp. 65–92, Jun. 1981.
  20. A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Reviews of Modern Physics, vol. 93, no. 2, p. 025005, May 2021.
  21. T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini, “Invariant measure for stochastic Schrödinger equations,” Annales Henri Poincaré, vol. 22, no. 2, pp. 347–374, Feb. 2021.
  22. T. Benoist, J.-L. Fatras, and C. Pellegrini, “Limit theorems for quantum trajectories,” Stochastic Processes and their Applications, vol. 164, pp. 288–310, Oct. 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.