2000 character limit reached
Online Parameter Estimation for Continuously Monitored Quantum Systems (2403.04648v2)
Published 7 Mar 2024 in quant-ph, cs.SY, and eess.SY
Abstract: In this work, we consider the problem of online (real-time, single-shot) estimation of static or slow-varying parameters along quantum trajectories in quantum dynamical systems. Based on the measurement signal of a continuously-monitored quantum system, we propose a recursive algorithm for computing the maximum likelihood estimate of unknown parameters using an approach based on stochastic gradient ascent on the log-likelihood function. We formulate the algorithm in both discrete-time and continuous-time and illustrate the performance of the algorithm through simulations of a simple two-level system undergoing homodyne measurement from which we are able to track multiple parameters simultaneously.
- P. Rouchon, “A tutorial introduction to quantum stochastic master equations based on the qubit/photon system,” Annual Reviews in Control, vol. 54, pp. 252–261, 2022.
- F. Verstraete, A. C. Doherty, and H. Mabuchi, “Sensitivity optimization in quantum parameter estimation,” Physical Review A, vol. 64, no. 3, p. 032111, Aug. 2001.
- J. Geremia, J. K. Stockton, A. C. Doherty, and H. Mabuchi, “Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry,” Physical Review Letters, vol. 91, no. 25, p. 250801, Dec. 2003.
- J. K. Stockton, J. M. Geremia, A. C. Doherty, and H. Mabuchi, “Robust quantum parameter estimation: Coherent magnetometry with feedback,” Physical Review A, vol. 69, no. 3, p. 032109, Mar. 2004.
- J. Amorós-Binefa and J. Kołodyński, “Noisy atomic magnetometry in real time,” New Journal of Physics, vol. 23, no. 12, p. 123030, Dec. 2021.
- J. Gambetta and H. M. Wiseman, “State and dynamical parameter estimation for open quantum systems,” Physical Review A, vol. 64, no. 4, p. 042105, Sep. 2001.
- P. Warszawski, J. Gambetta, and H. M. Wiseman, “Dynamical parameter estimation using realistic photodetection,” Physical Review A, vol. 69, no. 4, p. 042104, Apr. 2004.
- S. Gammelmark and K. Mølmer, “Bayesian parameter inference from continuously monitored quantum systems,” Physical Review A, vol. 87, no. 3, p. 032115, Mar. 2013.
- A. H. Kiilerich and K. Mølmer, “Bayesian parameter estimation by continuous homodyne detection,” Physical Review A, vol. 94, no. 3, p. 032103, Sep. 2016.
- B. A. Chase and J. M. Geremia, “Single-shot parameter estimation via continuous quantum measurement,” Physical Review A, vol. 79, no. 2, p. 022314, Feb. 2009.
- A. Negretti and K. Mølmer, “Estimation of classical parameters via continuous probing of complementary quantum observables,” New Journal of Physics, vol. 15, no. 12, p. 125002, Dec. 2013.
- P. Six, P. Campagne-Ibarcq, L. Bretheau, B. Huard, and P. Rouchon, “Parameter estimation from measurements along quantum trajectories,” in 2015 54th IEEE Conference on Decision and Control (CDC), Dec. 2015, pp. 7742–7748.
- J. F. Ralph, S. Maskell, and K. Jacobs, “Multiparameter estimation along quantum trajectories with sequential Monte Carlo methods,” Physical Review A, vol. 96, no. 5, p. 052306, Nov. 2017.
- M. Bompais, N. H. Amini, and C. Pellegrini, “Parameter estimation for quantum trajectories: Convergence result,” in 2022 IEEE 61st Conference on Decision and Control (CDC), Dec. 2022, pp. 5161–5166.
- J. F. Ralph, K. Jacobs, and C. D. Hill, “Frequency tracking and parameter estimation for robust quantum state estimation,” Physical Review A, vol. 84, no. 5, p. 052119, Nov. 2011.
- L. Cortez, A. Chantasri, L. P. García-Pintos, J. Dressel, and A. N. Jordan, “Rapid estimation of drifting parameters in continuously measured quantum systems,” Physical Review A, vol. 95, no. 1, p. 012314, Jan. 2017.
- P. Six, P. Campagne-Ibarcq, I. Dotsenko, A. Sarlette, B. Huard, and P. Rouchon, “Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence,” Physical Review A, vol. 93, no. 1, p. 012109, Jan. 2016.
- S. C. Surace and J.-P. Pfister, “Online maximum-likelihood estimation of the parameters of partially observed diffusion processes,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2814–2829, Jul. 2019.
- V. E. Beneš, “Exact finite-dimensional filters for certain diffusions with nonlinear drift,” Stochastics, vol. 5, no. 1-2, pp. 65–92, Jun. 1981.
- A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Reviews of Modern Physics, vol. 93, no. 2, p. 025005, May 2021.
- T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini, “Invariant measure for stochastic Schrödinger equations,” Annales Henri Poincaré, vol. 22, no. 2, pp. 347–374, Feb. 2021.
- T. Benoist, J.-L. Fatras, and C. Pellegrini, “Limit theorems for quantum trajectories,” Stochastic Processes and their Applications, vol. 164, pp. 288–310, Oct. 2023.