Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Entanglement Entropy of a Scalar Field in a Squeezed State (2403.03136v3)

Published 5 Mar 2024 in hep-th and quant-ph

Abstract: We study the entanglement entropy within a spherical region for a free scalar field in a squeezed state in 3+1 dimensions. We show that, even for small squeezing, a volume term appears, whose coefficient is essentially independent of the field mass. This is in line with Page's argument that the entanglement entropy in an arbitrary quantum state is proportional to the number of degrees of freedom of the smaller subsystem. It follows that squeezed states can be considered as arbitrary quantum states, in contrast to the ground or coherent states that give rise to entanglement entropy that is dominated by a term proportional to the area of the entangling surface.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes”, Phys. Rev. D 34, 373-383 (1986)
  2. M. Srednicki, “Entropy and area”, Phys. Rev. Lett.  71, 666 (1993) [hep-th/9303048].
  3. T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state”, Phys. Rev. Lett. 75, 1260-1263 (1995) [arXiv:gr-qc/9504004 [gr-qc]].
  4. M. Van Raamsdonk, “Building up spacetime with quantum entanglement”, Gen. Rel. Grav. 42, 2323-2329 (2010) [arXiv:1005.3035 [hep-th]].
  5. T. Jacobson, “Entanglement Equilibrium and the Einstein Equation”, Phys. Rev. Lett. 116, no.20, 201101 (2016) [arXiv:1505.04753 [gr-qc]].
  6. N. Lashkari, M. B. McDermott and M. Van Raamsdonk, “Gravitational dynamics from entanglement “thermodynamics””, JHEP 04, 195 (2014) [arXiv:1308.3716 [hep-th]].
  7. T. Faulkner, M. Guica, T. Hartman, R. C. Myers and M. Van Raamsdonk, “Gravitation from Entanglement in Holographic CFTs”. JHEP 03, 051 (2014) [arXiv:1312.7856 [hep-th]].
  8. D. N. Page, “Average entropy of a subsystem”, Phys. Rev. Lett. 71, 1291-1294 (1993) [arXiv:gr-qc/9305007 [gr-qc]].
  9. D. N. Page, “Information in black hole radiation”, Phys. Rev. Lett. 71, 3743-3746 (1993) [arXiv:hep-th/9306083 [hep-th]].
  10. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory”, J. Stat. Mech. 0406, P06002 (2004) [arXiv:hep-th/0405152 [hep-th]].
  11. H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory”, J. Phys. A 42, 504007 (2009) [arXiv:0905.2562 [hep-th]].
  12. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory”, J. Phys. A 42, 504005 (2009) [arXiv:0905.4013 [cond-mat.stat-mech]].
  13. D. Katsinis and G. Pastras, “An Inverse Mass Expansion for Entanglement Entropy in Free Massive Scalar Field Theory”, Eur. Phys. J. C 78, no.4, 282 (2018) [arXiv:1711.02618 [hep-th]].
  14. D. Katsinis and G. Pastras, “Area Law Behaviour of Mutual Information at Finite Temperature”, [arXiv:1907.04817 [hep-th]].
  15. D. Katsinis and G. Pastras, “An Inverse Mass Expansion for the Mutual Information in Free Scalar QFT at Finite Temperature”, JHEP 02, 091 (2020) [arXiv:1907.08508 [hep-th]].
  16. E. Benedict and S. Y. Pi, “Entanglement entropy of nontrivial states”, Annals Phys. 245, 209-224 (1996) [arXiv:hep-th/9505121 [hep-th]].
  17. D. Katsinis and G. Pastras, “Entanglement in harmonic systems at coherent states”, [arXiv:2206.05781 [hep-th]].
  18. D. Katsinis, G. Pastras and N. Tetradis, “Entanglement of harmonic systems in squeezed states”, JHEP 10, 039 (2023) [arXiv:2304.04241 [hep-th]].
  19. K. Boutivas, G. Pastras and N. Tetradis, “Entanglement and expansion”, JHEP 05 (2023), 199 [arXiv:2302.14666 [hep-th]].
  20. E. Bianchi, L. Hackl and N. Yokomizo, “Entanglement entropy of squeezed vacua on a lattice”, Phys. Rev. D 92, no.8, 085045 (2015) [arXiv:1507.01567 [hep-th]].
  21. G. Adesso, S. Ragy and A. R. Lee, “Continuous Variable Quantum Information: Gaussian States and Beyond”, Open Systems and Information Dynamics 21 01n02 1440001 (2014) [arXiv:1401.4679 [quant-ph]]
  22. E. Bianchi, L. Hackl and M. Kieburg, “Page curve for fermionic Gaussian states”, Phys. Rev. B 103, no.24, L241118 (2021) [arXiv:2103.05416 [quant-ph]].
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube