Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting large scale cosmological structure evolution with GAN-based autoencoders (2403.02171v1)

Published 4 Mar 2024 in astro-ph.CO and cs.LG

Abstract: Cosmological simulations play a key role in the prediction and understanding of large scale structure formation from initial conditions. We make use of GAN-based Autoencoders (AEs) in an attempt to predict structure evolution within simulations. The AEs are trained on images and cubes issued from respectively 2D and 3D N-body simulations describing the evolution of the dark matter (DM) field. We find that while the AEs can predict structure evolution for 2D simulations of DM fields well, using only the density fields as input, they perform significantly more poorly in similar conditions for 3D simulations. However, additionally providing velocity fields as inputs greatly improves results, with similar predictions regardless of time-difference between input and target.

Citations (1)

Summary

We haven't generated a summary for this paper yet.