Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semi-classical saddles of three-dimensional gravity via holography (2403.02108v2)

Published 4 Mar 2024 in hep-th and gr-qc

Abstract: We find out the complex geometries corresponding to the semi-classical saddles of threedimensional quantum gravity by making use of the known results of dual conformal field theory (CFT), which is effectively given by Liouville field theory. We examine both the cases with positive and negative cosmological constants. We determine the set of semi-classical saddles to choose from the homotopy argument in the Chern-Simons formulation combined with CFT results and provide strong supports from the mini-superspace approach to the quantum gravity. For the case of positive cosmological constant, partial results were already obtained in our previous works, and they are consistent with the current ones. For the case of negative cosmological constant, we identify the geometry corresponding a semi-classical saddle with three-dimensional Euclidean anti-de Sitter space dressed with imaginary radius three-dimensional spheres. The geometry is generically unphysical, but we argue that the fact itself does not lead to any problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Juan Martin Maldacena, “The large N𝑁Nitalic_N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231–252 (1998), arXiv:hep-th/9711200 .
  2. Juan Martin Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05, 013 (2003), arXiv:astro-ph/0210603 .
  3. Edward Witten, “Quantum gravity in de Sitter space,” in Strings 2001: International Conference (2001) arXiv:hep-th/0106109 .
  4. Andrew Strominger, “The dS/CFT correspondence,” JHEP 10, 034 (2001), arXiv:hep-th/0106113 .
  5. Yasuaki Hikida, Tatsuma Nishioka, Tadashi Takayanagi,  and Yusuke Taki, “Holography in de Sitter space via Chern-Simons gauge theory,” Phys. Rev. Lett. 129, 041601 (2022a), arXiv:2110.03197 [hep-th] .
  6. Yasuaki Hikida, Tatsuma Nishioka, Tadashi Takayanagi,  and Yusuke Taki, “CFT duals of three-dimensional de Sitter gravity,” JHEP 05, 129 (2022b), arXiv:2203.02852 [hep-th] .
  7. Heng-Yu Chen and Yasuaki Hikida, ‘‘Three-dimensional de Sitter holography and bulk correlators at late time,” Phys. Rev. Lett. 129, 061601 (2022), arXiv:2204.04871 [hep-th] .
  8. Heng-Yu Chen, Shi Chen,  and Yasuaki Hikida, “Late-time correlation functions in dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT correspondence,” JHEP 02, 038 (2023a), arXiv:2210.01415 [hep-th] .
  9. Peter Ouyang, “Toward higher spin dS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,”   (2011), arXiv:1111.0276 [hep-th] .
  10. Heng-Yu Chen, Yasuaki Hikida, Yusuke Taki,  and Takahiro Uetoko, “Complex saddles of three-dimensional de Sitter gravity via holography,” Phys. Rev. D 107, L101902 (2023b), arXiv:2302.09219 [hep-th] .
  11. Jacob D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333–2346 (1973).
  12. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199–220 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  13. G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15, 2752–2756 (1977a).
  14. G. W. Gibbons and S. W. Hawking, “Cosmological event horizons, thermodynamics, and particle creation,” Phys. Rev. D 15, 2738–2751 (1977b).
  15. Job Feldbrugge, Jean-Luc Lehners,  and Neil Turok, “Lorentzian quantum cosmology,” Phys. Rev. D 95, 103508 (2017), arXiv:1703.02076 [hep-th] .
  16. Pawel Caputa and Shinji Hirano, “Airy function and 4d quantum gravity,” JHEP 06, 106 (2018), arXiv:1804.00942 [hep-th] .
  17. William Donnelly, Elise LePage, Yan-Yan Li, Andre Pereira,  and Vasudev Shyam, “Quantum corrections to finite radius holography and holographic entanglement entropy,” JHEP 05, 006 (2020), arXiv:1909.11402 [hep-th] .
  18. Alice Di Tucci, Michal P. Heller,  and Jean-Luc Lehners, “Lessons for quantum cosmology from anti–de Sitter black holes,” Phys. Rev. D 102, 086011 (2020), arXiv:2007.04872 [hep-th] .
  19. Jean-Luc Lehners, “Review of the no-boundary wave function,” Phys. Rept. 1022, 1–82 (2023), arXiv:2303.08802 [hep-th] .
  20. Harald Dorn and H. J. Otto, “Two and three point functions in Liouville theory,” Nucl. Phys. B 429, 375–388 (1994), arXiv:hep-th/9403141 .
  21. Alexander B. Zamolodchikov and Alexei B. Zamolodchikov, “Structure constants and conformal bootstrap in Liouville field theory,” Nucl. Phys. B 477, 577–605 (1996), arXiv:hep-th/9506136 .
  22. A. Achucarro and P. K. Townsend, “A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories,” Phys. Lett. B 180, 89 (1986).
  23. Edward Witten, “(2+1)-dimensional gravity as an exactly soluble system,” Nucl. Phys. B 311, 46 (1988).
  24. Edward Witten, “A note on complex spacetime metrics,”   (2021), arXiv:2111.06514 [hep-th] .
  25. Edward Witten, “Quantization of Chern-Simons gauge theory with complex gauge group,” Commun. Math. Phys. 137, 29–66 (1991).
  26. Dionysios Anninos, Frederik Denef, Y. T. Albert Law,  and Zimo Sun, “Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions,” JHEP 01, 088 (2022), arXiv:2009.12464 [hep-th] .
  27. Jonathan J. Halliwell, “Derivation of the Wheeler-de Witt equation from a path integral for minisuperspace models,” Phys. Rev. D 38, 2468 (1988).
  28. Masazumi Honda, Hiroki Matsui, Kazumasa Okabayashi,  and Takahiro Terada, “Resurgence in Lorentzian quantum cosmology: no-boundary saddles and resummation of quantum gravity corrections around tunneling saddles,”   (2024), arXiv:2402.09981 [gr-qc] .
  29. Jean-Luc Lehners, “Allowable complex metrics in minisuperspace quantum cosmology,” Phys. Rev. D 105, 026022 (2022), arXiv:2111.07816 [hep-th] .
  30. Maxim Kontsevich and Graeme Segal, “Wick rotation and the positivity of energy in quantum field theory,” Quart. J. Math. Oxford Ser. 72, 673–699 (2021), arXiv:2105.10161 [hep-th] .
  31. J. B. Hartle and S. W. Hawking, ‘‘Wave function of the universe,” Phys. Rev. D 28, 2960–2975 (1983).
  32. Jorma Louko and Rafael D. Sorkin, “Complex actions in two-dimensional topology change,” Class. Quant. Grav. 14, 179–204 (1997), arXiv:gr-qc/9511023 .
  33. Kazuki Doi, Jonathan Harper, Ali Mollabashi, Tadashi Takayanagi,  and Yusuke Taki, “Timelike entanglement entropy,” JHEP 05, 052 (2023b), arXiv:2302.11695 [hep-th] .
  34. Chi-Ming Chang and Ying-Hsuan Lin, “Bootstrap, universality and horizons,” JHEP 10, 068 (2016), arXiv:1604.01774 [hep-th] .
  35. Jeevan Chandra, Scott Collier, Thomas Hartman,  and Alexander Maloney, “Semiclassical 3D gravity as an average of large-c CFTs,” JHEP 12, 069 (2022), arXiv:2203.06511 [hep-th] .
  36. Jacob Abajian, Francesco Aprile, Robert C. Myers,  and Pedro Vieira, “Correlation functions of huge operators in AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT: Domes, doors and book pages,”   (2023), arXiv:2307.13188 [hep-th] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com